Steffen A. Schweizer, Michaela Aehnelt, Franziska Bucka, Kai Uwe Totsche, Ingrid Kögel-Knabner
{"title":"裸地休耕管理对岩石碎块梯度土壤碳储量和聚集的影响","authors":"Steffen A. Schweizer, Michaela Aehnelt, Franziska Bucka, Kai Uwe Totsche, Ingrid Kögel-Knabner","doi":"10.1002/jpln.202300156","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Our understanding of C storage in soils lacks insights investigating organic matter (OM) depletion, often studied in bare fallow systems. The content of coarse rock fragments is often excluded, whereas it may affect C storage.</p>\n </section>\n \n <section>\n \n <h3> Aims</h3>\n \n <p>We aim to contribute to a better understanding of the impact of bare fallow on C storage mechanisms in the soil as influenced by its coarse rock fragment contents. We investigated whether bare fallow induced a depletion of C in OM fractions and analyzed to which extent this affected soil aggregate size distribution and the C loading of the clay-sized fraction.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A comparison of 14 years bare fallow management with adjacent cropped soils located in Selhausen (Germany) provided a gradient of coarse rock fragments of 34%–71%, from which sites with three different fine earth (FE) contents were compared. Across the FE gradient, we isolated particulate OM and mineral-associated OM fractions, obtained microaggregate and macroaggregate size fractions, and quantified the C loading.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Bare fallow management induced an OM depletion at lower contents of FE. There, the management influence was more concentrated onto less FE volume. The contribution of both particulate and mineral-associated OM fractions to the C in the low-FE soils decreased. The C loading increased under bare fallow, compared to cropped soil. In the low-FE soil, we also found less macroaggregates, whereas the C content decreased in some microaggregate size fractions.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>A high content of coarse rock fragments can enhance OM depletion decreasing mineral-associated and particulate C under bare fallow.</p>\n </section>\n </div>","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"187 1","pages":"118-129"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202300156","citationCount":"0","resultStr":"{\"title\":\"Impact of bare fallow management on soil carbon storage and aggregates across a rock fragment gradient\",\"authors\":\"Steffen A. Schweizer, Michaela Aehnelt, Franziska Bucka, Kai Uwe Totsche, Ingrid Kögel-Knabner\",\"doi\":\"10.1002/jpln.202300156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Our understanding of C storage in soils lacks insights investigating organic matter (OM) depletion, often studied in bare fallow systems. The content of coarse rock fragments is often excluded, whereas it may affect C storage.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>We aim to contribute to a better understanding of the impact of bare fallow on C storage mechanisms in the soil as influenced by its coarse rock fragment contents. We investigated whether bare fallow induced a depletion of C in OM fractions and analyzed to which extent this affected soil aggregate size distribution and the C loading of the clay-sized fraction.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>A comparison of 14 years bare fallow management with adjacent cropped soils located in Selhausen (Germany) provided a gradient of coarse rock fragments of 34%–71%, from which sites with three different fine earth (FE) contents were compared. Across the FE gradient, we isolated particulate OM and mineral-associated OM fractions, obtained microaggregate and macroaggregate size fractions, and quantified the C loading.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Bare fallow management induced an OM depletion at lower contents of FE. There, the management influence was more concentrated onto less FE volume. The contribution of both particulate and mineral-associated OM fractions to the C in the low-FE soils decreased. The C loading increased under bare fallow, compared to cropped soil. In the low-FE soil, we also found less macroaggregates, whereas the C content decreased in some microaggregate size fractions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>A high content of coarse rock fragments can enhance OM depletion decreasing mineral-associated and particulate C under bare fallow.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16802,\"journal\":{\"name\":\"Journal of Plant Nutrition and Soil Science\",\"volume\":\"187 1\",\"pages\":\"118-129\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202300156\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Nutrition and Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jpln.202300156\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Nutrition and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jpln.202300156","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Impact of bare fallow management on soil carbon storage and aggregates across a rock fragment gradient
Background
Our understanding of C storage in soils lacks insights investigating organic matter (OM) depletion, often studied in bare fallow systems. The content of coarse rock fragments is often excluded, whereas it may affect C storage.
Aims
We aim to contribute to a better understanding of the impact of bare fallow on C storage mechanisms in the soil as influenced by its coarse rock fragment contents. We investigated whether bare fallow induced a depletion of C in OM fractions and analyzed to which extent this affected soil aggregate size distribution and the C loading of the clay-sized fraction.
Methods
A comparison of 14 years bare fallow management with adjacent cropped soils located in Selhausen (Germany) provided a gradient of coarse rock fragments of 34%–71%, from which sites with three different fine earth (FE) contents were compared. Across the FE gradient, we isolated particulate OM and mineral-associated OM fractions, obtained microaggregate and macroaggregate size fractions, and quantified the C loading.
Results
Bare fallow management induced an OM depletion at lower contents of FE. There, the management influence was more concentrated onto less FE volume. The contribution of both particulate and mineral-associated OM fractions to the C in the low-FE soils decreased. The C loading increased under bare fallow, compared to cropped soil. In the low-FE soil, we also found less macroaggregates, whereas the C content decreased in some microaggregate size fractions.
Conclusions
A high content of coarse rock fragments can enhance OM depletion decreasing mineral-associated and particulate C under bare fallow.
期刊介绍:
Established in 1922, the Journal of Plant Nutrition and Soil Science (JPNSS) is an international peer-reviewed journal devoted to cover the entire spectrum of plant nutrition and soil science from different scale units, e.g. agroecosystem to natural systems. With its wide scope and focus on soil-plant interactions, JPNSS is one of the leading journals on this topic. Articles in JPNSS include reviews, high-standard original papers, and short communications and represent challenging research of international significance. The Journal of Plant Nutrition and Soil Science is one of the world’s oldest journals. You can trust in a peer-reviewed journal that has been established in the plant and soil science community for almost 100 years.
Journal of Plant Nutrition and Soil Science (ISSN 1436-8730) is published in six volumes per year, by the German Societies of Plant Nutrition (DGP) and Soil Science (DBG). Furthermore, the Journal of Plant Nutrition and Soil Science (JPNSS) is a Cooperating Journal of the International Union of Soil Science (IUSS). The journal is produced by Wiley-VCH.
Topical Divisions of the Journal of Plant Nutrition and Soil Science that are receiving increasing attention are:
JPNSS – Topical Divisions
Special timely focus in interdisciplinarity:
- sustainability & critical zone science.
Soil-Plant Interactions:
- rhizosphere science & soil ecology
- pollutant cycling & plant-soil protection
- land use & climate change.
Soil Science:
- soil chemistry & soil physics
- soil biology & biogeochemistry
- soil genesis & mineralogy.
Plant Nutrition:
- plant nutritional physiology
- nutrient dynamics & soil fertility
- ecophysiological aspects of plant nutrition.