低氧诱导因子 1 的调节机制及其临床意义

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-15 DOI:10.2174/0118761429266116231123160809
Chun-Li Yin, Yu-Jie Ma
{"title":"低氧诱导因子 1 的调节机制及其临床意义","authors":"Chun-Li Yin, Yu-Jie Ma","doi":"10.2174/0118761429266116231123160809","DOIUrl":null,"url":null,"abstract":":: Hypoxia-inducible factor (HIF) is a nuclear protein that plays a crucial role in oxygen homeostasis through its transcriptional activity and thousands of target gene profiles. Through transcriptional and post-transcriptional regulation, the downstream target genes of HIF can trigger multiple pathological responses in the body, including energy metabolism, cytopenia, and angiogenesis. There are three distinct subtypes of HIF: HIF-1, HIF-2, and HIF-3. HIF-1 is a significant regulator of the cellular response to hypoxia, and the balance between its production and degradation is critical for this response. As hypoxia is linked to several disorders, understanding HIF can open up novel avenues for the treatment of many diseases. This review describes the regulatory mechanisms of HIF-1 synthesis and degradation and the clinical significance of the hypoxia-inducible factor pathway in lung injury, kidney disease, hematologic disorders, and inflammation-related diseases.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Regulatory Mechanism of Hypoxia-inducible Factor 1 and its Clinical Significance\",\"authors\":\"Chun-Li Yin, Yu-Jie Ma\",\"doi\":\"10.2174/0118761429266116231123160809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\":: Hypoxia-inducible factor (HIF) is a nuclear protein that plays a crucial role in oxygen homeostasis through its transcriptional activity and thousands of target gene profiles. Through transcriptional and post-transcriptional regulation, the downstream target genes of HIF can trigger multiple pathological responses in the body, including energy metabolism, cytopenia, and angiogenesis. There are three distinct subtypes of HIF: HIF-1, HIF-2, and HIF-3. HIF-1 is a significant regulator of the cellular response to hypoxia, and the balance between its production and degradation is critical for this response. As hypoxia is linked to several disorders, understanding HIF can open up novel avenues for the treatment of many diseases. This review describes the regulatory mechanisms of HIF-1 synthesis and degradation and the clinical significance of the hypoxia-inducible factor pathway in lung injury, kidney disease, hematologic disorders, and inflammation-related diseases.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0118761429266116231123160809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0118761429266116231123160809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

::缺氧诱导因子(HIF)是一种核蛋白,通过其转录活性和数千个靶基因谱在氧平衡中发挥着至关重要的作用。通过转录和转录后调控,HIF 的下游靶基因可引发机体的多种病理反应,包括能量代谢、细胞减少和血管生成。HIF 有三种不同的亚型:HIF-1、HIF-2 和 HIF-3。HIF-1 是细胞对缺氧反应的重要调节因子,其产生和降解之间的平衡对这种反应至关重要。由于缺氧与多种疾病相关,了解 HIF 可以为治疗多种疾病开辟新的途径。本综述介绍了 HIF-1 合成和降解的调控机制,以及缺氧诱导因子通路在肺损伤、肾脏疾病、血液病和炎症相关疾病中的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Regulatory Mechanism of Hypoxia-inducible Factor 1 and its Clinical Significance
:: Hypoxia-inducible factor (HIF) is a nuclear protein that plays a crucial role in oxygen homeostasis through its transcriptional activity and thousands of target gene profiles. Through transcriptional and post-transcriptional regulation, the downstream target genes of HIF can trigger multiple pathological responses in the body, including energy metabolism, cytopenia, and angiogenesis. There are three distinct subtypes of HIF: HIF-1, HIF-2, and HIF-3. HIF-1 is a significant regulator of the cellular response to hypoxia, and the balance between its production and degradation is critical for this response. As hypoxia is linked to several disorders, understanding HIF can open up novel avenues for the treatment of many diseases. This review describes the regulatory mechanisms of HIF-1 synthesis and degradation and the clinical significance of the hypoxia-inducible factor pathway in lung injury, kidney disease, hematologic disorders, and inflammation-related diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1