Edita Aksamitiene, Ryan N Heffelfinger, Jan B Hoek, Edmund deAzevedo Pribitkin
{"title":"研究缺血性皮瓣愈合的细胞和分子机制的标准化临床前手术动物模型方案。","authors":"Edita Aksamitiene, Ryan N Heffelfinger, Jan B Hoek, Edmund deAzevedo Pribitkin","doi":"10.1186/s12575-023-00227-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Some of the most complex surgical interventions to treat trauma and cancer include the use of locoregional pedicled and free autologous tissue transfer flaps. While the techniques used for these reconstructive surgery procedures have improved over time, flap complications and even failure remain a significant clinical challenge. Animal models are useful in studying the pathophysiology of ischemic flaps, but when repeatability is a primary focus of a study, conventional in-vivo designs, where one randomized subset of animals serves as a treatment group while a second subset serves as a control, are at a disadvantage instigated by greater subject-to-subject variability. Our goal was to provide a step-by-step methodological protocol for creating an alternative standardized, more economical, and transferable pre-clinical animal research model of excisional full-thickness wound healing following a simulated autologous tissue transfer which includes the primary ischemia, reperfusion, and secondary ischemia events with the latter mimicking flap salvage procedure.</p><p><strong>Results: </strong>Unlike in the most frequently used classical unilateral McFarlane's caudally based dorsal random pattern skin flap model, in the herein described bilateral epigastric fasciocutaneous advancement flap (BEFAF) model, one flap heals under normal and a contralateral flap-under perturbed conditions or both flaps heal under conditions that vary by one within-subjects factor. We discuss the advantages and limitations of the proposed experimental approach and, as a part of model validation, provide the examples of its use in laboratory rat (Rattus norvegicus) axial pattern flap healing studies.</p><p><strong>Conclusions: </strong>This technically challenging but feasible reconstructive surgery model eliminates inter-subject variability, while concomitantly minimizing the number of animals needed to achieve adequate statistical power. BEFAFs may be used to investigate the spatiotemporal cellular and molecular responses to complex tissue injury, interventions simulating clinically relevant flap complications (e.g., vascular thrombosis) as well as prophylactic, therapeutic or surgical treatment (e.g., flap delay) strategies in the presence or absence of confounding risk factors (e.g., substance abuse, irradiation, diabetes) or favorable wound-healing promoting activities (e.g., exercise). Detailed visual instructions in BEFAF protocol may serve as an aid for teaching medical or academic researchers basic vascular microsurgery techniques that focus on precision, tremor management and magnification.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"26 1","pages":"2"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792889/pdf/","citationCount":"0","resultStr":"{\"title\":\"Standardized Pre-clinical Surgical Animal Model Protocol to Investigate the Cellular and Molecular Mechanisms of Ischemic Flap Healing.\",\"authors\":\"Edita Aksamitiene, Ryan N Heffelfinger, Jan B Hoek, Edmund deAzevedo Pribitkin\",\"doi\":\"10.1186/s12575-023-00227-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Some of the most complex surgical interventions to treat trauma and cancer include the use of locoregional pedicled and free autologous tissue transfer flaps. While the techniques used for these reconstructive surgery procedures have improved over time, flap complications and even failure remain a significant clinical challenge. Animal models are useful in studying the pathophysiology of ischemic flaps, but when repeatability is a primary focus of a study, conventional in-vivo designs, where one randomized subset of animals serves as a treatment group while a second subset serves as a control, are at a disadvantage instigated by greater subject-to-subject variability. Our goal was to provide a step-by-step methodological protocol for creating an alternative standardized, more economical, and transferable pre-clinical animal research model of excisional full-thickness wound healing following a simulated autologous tissue transfer which includes the primary ischemia, reperfusion, and secondary ischemia events with the latter mimicking flap salvage procedure.</p><p><strong>Results: </strong>Unlike in the most frequently used classical unilateral McFarlane's caudally based dorsal random pattern skin flap model, in the herein described bilateral epigastric fasciocutaneous advancement flap (BEFAF) model, one flap heals under normal and a contralateral flap-under perturbed conditions or both flaps heal under conditions that vary by one within-subjects factor. We discuss the advantages and limitations of the proposed experimental approach and, as a part of model validation, provide the examples of its use in laboratory rat (Rattus norvegicus) axial pattern flap healing studies.</p><p><strong>Conclusions: </strong>This technically challenging but feasible reconstructive surgery model eliminates inter-subject variability, while concomitantly minimizing the number of animals needed to achieve adequate statistical power. BEFAFs may be used to investigate the spatiotemporal cellular and molecular responses to complex tissue injury, interventions simulating clinically relevant flap complications (e.g., vascular thrombosis) as well as prophylactic, therapeutic or surgical treatment (e.g., flap delay) strategies in the presence or absence of confounding risk factors (e.g., substance abuse, irradiation, diabetes) or favorable wound-healing promoting activities (e.g., exercise). Detailed visual instructions in BEFAF protocol may serve as an aid for teaching medical or academic researchers basic vascular microsurgery techniques that focus on precision, tremor management and magnification.</p>\",\"PeriodicalId\":8960,\"journal\":{\"name\":\"Biological Procedures Online\",\"volume\":\"26 1\",\"pages\":\"2\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792889/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Procedures Online\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12575-023-00227-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Procedures Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12575-023-00227-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Standardized Pre-clinical Surgical Animal Model Protocol to Investigate the Cellular and Molecular Mechanisms of Ischemic Flap Healing.
Background: Some of the most complex surgical interventions to treat trauma and cancer include the use of locoregional pedicled and free autologous tissue transfer flaps. While the techniques used for these reconstructive surgery procedures have improved over time, flap complications and even failure remain a significant clinical challenge. Animal models are useful in studying the pathophysiology of ischemic flaps, but when repeatability is a primary focus of a study, conventional in-vivo designs, where one randomized subset of animals serves as a treatment group while a second subset serves as a control, are at a disadvantage instigated by greater subject-to-subject variability. Our goal was to provide a step-by-step methodological protocol for creating an alternative standardized, more economical, and transferable pre-clinical animal research model of excisional full-thickness wound healing following a simulated autologous tissue transfer which includes the primary ischemia, reperfusion, and secondary ischemia events with the latter mimicking flap salvage procedure.
Results: Unlike in the most frequently used classical unilateral McFarlane's caudally based dorsal random pattern skin flap model, in the herein described bilateral epigastric fasciocutaneous advancement flap (BEFAF) model, one flap heals under normal and a contralateral flap-under perturbed conditions or both flaps heal under conditions that vary by one within-subjects factor. We discuss the advantages and limitations of the proposed experimental approach and, as a part of model validation, provide the examples of its use in laboratory rat (Rattus norvegicus) axial pattern flap healing studies.
Conclusions: This technically challenging but feasible reconstructive surgery model eliminates inter-subject variability, while concomitantly minimizing the number of animals needed to achieve adequate statistical power. BEFAFs may be used to investigate the spatiotemporal cellular and molecular responses to complex tissue injury, interventions simulating clinically relevant flap complications (e.g., vascular thrombosis) as well as prophylactic, therapeutic or surgical treatment (e.g., flap delay) strategies in the presence or absence of confounding risk factors (e.g., substance abuse, irradiation, diabetes) or favorable wound-healing promoting activities (e.g., exercise). Detailed visual instructions in BEFAF protocol may serve as an aid for teaching medical or academic researchers basic vascular microsurgery techniques that focus on precision, tremor management and magnification.
期刊介绍:
iological Procedures Online publishes articles that improve access to techniques and methods in the medical and biological sciences.
We are also interested in short but important research discoveries, such as new animal disease models.
Topics of interest include, but are not limited to:
Reports of new research techniques and applications of existing techniques
Technical analyses of research techniques and published reports
Validity analyses of research methods and approaches to judging the validity of research reports
Application of common research methods
Reviews of existing techniques
Novel/important product information
Biological Procedures Online places emphasis on multidisciplinary approaches that integrate methodologies from medicine, biology, chemistry, imaging, engineering, bioinformatics, computer science, and systems analysis.