Andrew J Dunbar, Robert L Bowman, Young C Park, Kavi O'Connor, Franco Izzo, Robert M Myers, Abdul Karzai, Zachary Zaroogian, Won Jun Kim, Inés Fernández-Maestre, Michael R Waarts, Abbas Nazir, Wenbin Xiao, Tamara Codilupi, Max Brodsky, Mirko Farina, Louise Cai, Sheng F Cai, Benjamin Wang, Wenbin An, Julie L Yang, Shoron Mowla, Shira E Eisman, Amritha Varshini Hanasoge Somasundara, Jacob L Glass, Tanmay Mishra, Remie Houston, Emily Guzzardi, Anthony R Martinez Benitez, Aaron D Viny, Richard P Koche, Sara C Meyer, Dan A Landau, Ross L Levine
{"title":"Jak2V617F 的可逆激活显示了骨髓增殖性肿瘤的基本要求","authors":"Andrew J Dunbar, Robert L Bowman, Young C Park, Kavi O'Connor, Franco Izzo, Robert M Myers, Abdul Karzai, Zachary Zaroogian, Won Jun Kim, Inés Fernández-Maestre, Michael R Waarts, Abbas Nazir, Wenbin Xiao, Tamara Codilupi, Max Brodsky, Mirko Farina, Louise Cai, Sheng F Cai, Benjamin Wang, Wenbin An, Julie L Yang, Shoron Mowla, Shira E Eisman, Amritha Varshini Hanasoge Somasundara, Jacob L Glass, Tanmay Mishra, Remie Houston, Emily Guzzardi, Anthony R Martinez Benitez, Aaron D Viny, Richard P Koche, Sara C Meyer, Dan A Landau, Ross L Levine","doi":"10.1158/2159-8290.CD-22-0952","DOIUrl":null,"url":null,"abstract":"<p><p>Gain-of-function mutations activating JAK/STAT signaling are seen in the majority of patients with myeloproliferative neoplasms (MPN), most commonly JAK2V617F. Although clinically approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic therapy. We hypothesized this is due to limitations of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2V617F from its endogenous locus using a combined Dre-rox/Cre-lox dual-recombinase system. Jak2V617F deletion abrogates MPN features, induces depletion of mutant-specific hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition, including when cooccurring with somatic Tet2 loss. Our data suggest JAK2V617F represents the best therapeutic target in MPNs and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo.</p><p><strong>Significance: </strong>Current JAK inhibitors to treat myeloproliferative neoplasms are ineffective at eradicating mutant cells. We developed an endogenously expressed Jak2V617F dual-recombinase knock-in/knock-out model to investigate Jak2V617F oncogenic reversion in vivo. Jak2V617F deletion abrogates MPN features and depletes disease-sustaining MPN stem cells, suggesting improved Jak2V617F targeting offers the potential for greater therapeutic efficacy. See related commentary by Celik and Challen, p. 701. This article is featured in Selected Articles from This Issue, p. 695.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":null,"pages":null},"PeriodicalIF":29.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11061606/pdf/","citationCount":"0","resultStr":"{\"title\":\"Jak2V617F Reversible Activation Shows Its Essential Requirement in Myeloproliferative Neoplasms.\",\"authors\":\"Andrew J Dunbar, Robert L Bowman, Young C Park, Kavi O'Connor, Franco Izzo, Robert M Myers, Abdul Karzai, Zachary Zaroogian, Won Jun Kim, Inés Fernández-Maestre, Michael R Waarts, Abbas Nazir, Wenbin Xiao, Tamara Codilupi, Max Brodsky, Mirko Farina, Louise Cai, Sheng F Cai, Benjamin Wang, Wenbin An, Julie L Yang, Shoron Mowla, Shira E Eisman, Amritha Varshini Hanasoge Somasundara, Jacob L Glass, Tanmay Mishra, Remie Houston, Emily Guzzardi, Anthony R Martinez Benitez, Aaron D Viny, Richard P Koche, Sara C Meyer, Dan A Landau, Ross L Levine\",\"doi\":\"10.1158/2159-8290.CD-22-0952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gain-of-function mutations activating JAK/STAT signaling are seen in the majority of patients with myeloproliferative neoplasms (MPN), most commonly JAK2V617F. Although clinically approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic therapy. We hypothesized this is due to limitations of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2V617F from its endogenous locus using a combined Dre-rox/Cre-lox dual-recombinase system. Jak2V617F deletion abrogates MPN features, induces depletion of mutant-specific hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition, including when cooccurring with somatic Tet2 loss. Our data suggest JAK2V617F represents the best therapeutic target in MPNs and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo.</p><p><strong>Significance: </strong>Current JAK inhibitors to treat myeloproliferative neoplasms are ineffective at eradicating mutant cells. We developed an endogenously expressed Jak2V617F dual-recombinase knock-in/knock-out model to investigate Jak2V617F oncogenic reversion in vivo. Jak2V617F deletion abrogates MPN features and depletes disease-sustaining MPN stem cells, suggesting improved Jak2V617F targeting offers the potential for greater therapeutic efficacy. See related commentary by Celik and Challen, p. 701. This article is featured in Selected Articles from This Issue, p. 695.</p>\",\"PeriodicalId\":9430,\"journal\":{\"name\":\"Cancer discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":29.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11061606/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2159-8290.CD-22-0952\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-22-0952","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
大多数骨髓增生性肿瘤(MPN)患者都存在激活 JAK/STAT 信号转导的功能增益突变,其中最常见的是 JAK2V617F。虽然临床批准的 JAK 抑制剂能改善骨髓增生性肿瘤的症状和预后,但缓解的情况很少见,突变等位基因的负担也不会随着长期治疗而发生实质性改变。我们推测这是由于目前的 JAK 抑制剂在有效和特异性地消减突变 JAK2 信号传导方面存在局限性。因此,我们开发了一种条件诱导型小鼠模型,利用 Dre-rox/Cre-lox 组合双重组酶系统从内源性基因座依次激活和灭活 Jak2V617F。Jak2V617F缺失可消除MPN特征,诱导突变特异性造血干细胞/祖细胞的耗竭,并延长总生存期,其延长程度是药物性JAK抑制所无法观察到的,包括与体细胞Tet2缺失同时发生时。我们的数据表明,JAK2V617F是多发性骨髓瘤的最佳治疗靶点,并证明了双重组蛋白酶系统对评估体内突变特异性致癌依赖性的治疗意义。
Jak2V617F Reversible Activation Shows Its Essential Requirement in Myeloproliferative Neoplasms.
Gain-of-function mutations activating JAK/STAT signaling are seen in the majority of patients with myeloproliferative neoplasms (MPN), most commonly JAK2V617F. Although clinically approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic therapy. We hypothesized this is due to limitations of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2V617F from its endogenous locus using a combined Dre-rox/Cre-lox dual-recombinase system. Jak2V617F deletion abrogates MPN features, induces depletion of mutant-specific hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition, including when cooccurring with somatic Tet2 loss. Our data suggest JAK2V617F represents the best therapeutic target in MPNs and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo.
Significance: Current JAK inhibitors to treat myeloproliferative neoplasms are ineffective at eradicating mutant cells. We developed an endogenously expressed Jak2V617F dual-recombinase knock-in/knock-out model to investigate Jak2V617F oncogenic reversion in vivo. Jak2V617F deletion abrogates MPN features and depletes disease-sustaining MPN stem cells, suggesting improved Jak2V617F targeting offers the potential for greater therapeutic efficacy. See related commentary by Celik and Challen, p. 701. This article is featured in Selected Articles from This Issue, p. 695.
期刊介绍:
Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.