{"title":"过表达 SCN5A 可通过促进细胞凋亡克服急性髓性白血病 ABC 转运体介导的多药耐药性。","authors":"Kun Xu, Xian-Xu Zhuang, Xiao-Wei Shi","doi":"10.1080/17474086.2024.2305363","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to explore the effect and mechanism of SCN5A overcoming ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) in acute myeloid leukemia (AML) through promoting apoptosis.</p><p><strong>Research design and methods: </strong>The tissues derived from AML patients were divided into Sensitive group and Resistance group according to the presence of drug-resistance. Human AML cell line HL-60 and drug-resistant strain HL-60/ADR were divided into HL-60/ADR-vector group, HL-60/ADR-SCN5A group, HL-60-vector group and HL-60-SCN5A group. RT-qPCR was used to detect the mRNA expression level of SCN5A; MTT assay to assess the survival rate and proliferation level of cells; flow cytometry to determine the apoptosis level; and western blot to check the levels of SCN5A, P-glycoprotein (P-gp), MDR protein 1 (MRP1), MDR gene 1 (MDR1), breast cancer resistance protein (BCRP), Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2) proteins in cells.</p><p><strong>Results: </strong>SCN5A expressed lowly in drug-resistant AML tissues and cells. Up-regulation of SCN5A inhibited MDR in HL-60 cells, enhanced the chemosensitivity of HL-60/ADR, and increased the apoptosis levels of HL-60 and HL-60/ADR cells. However, over-expression of SCN5A inhibited the expression of MDR-related proteins.</p><p><strong>Conclusions: </strong>SCN5A may overcome ABC transporter-mediated MDR in AML through enhancing the apoptosis and inhibiting the expression of MDR proteins.</p>","PeriodicalId":12325,"journal":{"name":"Expert Review of Hematology","volume":" ","pages":"87-94"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of SCN5A overcomes ABC transporter-mediated multidrug resistance in acute myeloid leukemia through promoting apoptosis.\",\"authors\":\"Kun Xu, Xian-Xu Zhuang, Xiao-Wei Shi\",\"doi\":\"10.1080/17474086.2024.2305363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study aimed to explore the effect and mechanism of SCN5A overcoming ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) in acute myeloid leukemia (AML) through promoting apoptosis.</p><p><strong>Research design and methods: </strong>The tissues derived from AML patients were divided into Sensitive group and Resistance group according to the presence of drug-resistance. Human AML cell line HL-60 and drug-resistant strain HL-60/ADR were divided into HL-60/ADR-vector group, HL-60/ADR-SCN5A group, HL-60-vector group and HL-60-SCN5A group. RT-qPCR was used to detect the mRNA expression level of SCN5A; MTT assay to assess the survival rate and proliferation level of cells; flow cytometry to determine the apoptosis level; and western blot to check the levels of SCN5A, P-glycoprotein (P-gp), MDR protein 1 (MRP1), MDR gene 1 (MDR1), breast cancer resistance protein (BCRP), Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2) proteins in cells.</p><p><strong>Results: </strong>SCN5A expressed lowly in drug-resistant AML tissues and cells. Up-regulation of SCN5A inhibited MDR in HL-60 cells, enhanced the chemosensitivity of HL-60/ADR, and increased the apoptosis levels of HL-60 and HL-60/ADR cells. However, over-expression of SCN5A inhibited the expression of MDR-related proteins.</p><p><strong>Conclusions: </strong>SCN5A may overcome ABC transporter-mediated MDR in AML through enhancing the apoptosis and inhibiting the expression of MDR proteins.</p>\",\"PeriodicalId\":12325,\"journal\":{\"name\":\"Expert Review of Hematology\",\"volume\":\" \",\"pages\":\"87-94\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17474086.2024.2305363\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17474086.2024.2305363","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Overexpression of SCN5A overcomes ABC transporter-mediated multidrug resistance in acute myeloid leukemia through promoting apoptosis.
Background: This study aimed to explore the effect and mechanism of SCN5A overcoming ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) in acute myeloid leukemia (AML) through promoting apoptosis.
Research design and methods: The tissues derived from AML patients were divided into Sensitive group and Resistance group according to the presence of drug-resistance. Human AML cell line HL-60 and drug-resistant strain HL-60/ADR were divided into HL-60/ADR-vector group, HL-60/ADR-SCN5A group, HL-60-vector group and HL-60-SCN5A group. RT-qPCR was used to detect the mRNA expression level of SCN5A; MTT assay to assess the survival rate and proliferation level of cells; flow cytometry to determine the apoptosis level; and western blot to check the levels of SCN5A, P-glycoprotein (P-gp), MDR protein 1 (MRP1), MDR gene 1 (MDR1), breast cancer resistance protein (BCRP), Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2) proteins in cells.
Results: SCN5A expressed lowly in drug-resistant AML tissues and cells. Up-regulation of SCN5A inhibited MDR in HL-60 cells, enhanced the chemosensitivity of HL-60/ADR, and increased the apoptosis levels of HL-60 and HL-60/ADR cells. However, over-expression of SCN5A inhibited the expression of MDR-related proteins.
Conclusions: SCN5A may overcome ABC transporter-mediated MDR in AML through enhancing the apoptosis and inhibiting the expression of MDR proteins.
期刊介绍:
Advanced molecular research techniques have transformed hematology in recent years. With improved understanding of hematologic diseases, we now have the opportunity to research and evaluate new biological therapies, new drugs and drug combinations, new treatment schedules and novel approaches including stem cell transplantation. We can also expect proteomics, molecular genetics and biomarker research to facilitate new diagnostic approaches and the identification of appropriate therapies. Further advances in our knowledge regarding the formation and function of blood cells and blood-forming tissues should ensue, and it will be a major challenge for hematologists to adopt these new paradigms and develop integrated strategies to define the best possible patient care. Expert Review of Hematology (1747-4086) puts these advances in context and explores how they will translate directly into clinical practice.