{"title":"术中小儿脑电图监测--最新综述。","authors":"Ian Yuan, Choon L Bong, Jerry Y Chao","doi":"10.4097/kja.23843","DOIUrl":null,"url":null,"abstract":"<p><p>Intraoperative electroencephalography (EEG) monitoring under pediatric anesthesia has begun to attract increasing interest, driven by the availability of pediatric-specific EEG monitors and the realization that traditional dosing methods based on patient movement or changes in hemodynamic response often lead to imprecise dosing, especially in younger infants who may experience adverse events (e.g., hypotension) due to excess anesthesia. EEG directly measures the effects of anesthetics on the brain, which is the target end-organ responsible for inducing loss of consciousness. Over the past ten years, research on anesthesia and computational neuroscience has improved our understanding of intraoperative pediatric EEG monitoring and expanded the utility of EEG in clinical practice. We now have better insights into neurodevelopmental changes in the developing pediatric brain, functional connectivity, the use of non-proprietary EEG parameters to guide anesthetic dosing, epileptiform EEG changes during induction, EEG changes from spinal/regional anesthesia, EEG discontinuity, and the use of EEG to improve clinical outcomes. This review article summarizes the recent literature on EEG monitoring in perioperative pediatric anesthesia, highlighting several of the topics mentioned above.</p>","PeriodicalId":17855,"journal":{"name":"Korean Journal of Anesthesiology","volume":" ","pages":"289-305"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150110/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intraoperative pediatric electroencephalography monitoring: an updated review.\",\"authors\":\"Ian Yuan, Choon L Bong, Jerry Y Chao\",\"doi\":\"10.4097/kja.23843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intraoperative electroencephalography (EEG) monitoring under pediatric anesthesia has begun to attract increasing interest, driven by the availability of pediatric-specific EEG monitors and the realization that traditional dosing methods based on patient movement or changes in hemodynamic response often lead to imprecise dosing, especially in younger infants who may experience adverse events (e.g., hypotension) due to excess anesthesia. EEG directly measures the effects of anesthetics on the brain, which is the target end-organ responsible for inducing loss of consciousness. Over the past ten years, research on anesthesia and computational neuroscience has improved our understanding of intraoperative pediatric EEG monitoring and expanded the utility of EEG in clinical practice. We now have better insights into neurodevelopmental changes in the developing pediatric brain, functional connectivity, the use of non-proprietary EEG parameters to guide anesthetic dosing, epileptiform EEG changes during induction, EEG changes from spinal/regional anesthesia, EEG discontinuity, and the use of EEG to improve clinical outcomes. This review article summarizes the recent literature on EEG monitoring in perioperative pediatric anesthesia, highlighting several of the topics mentioned above.</p>\",\"PeriodicalId\":17855,\"journal\":{\"name\":\"Korean Journal of Anesthesiology\",\"volume\":\" \",\"pages\":\"289-305\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150110/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Anesthesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4097/kja.23843\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Anesthesiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4097/kja.23843","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
Intraoperative pediatric electroencephalography monitoring: an updated review.
Intraoperative electroencephalography (EEG) monitoring under pediatric anesthesia has begun to attract increasing interest, driven by the availability of pediatric-specific EEG monitors and the realization that traditional dosing methods based on patient movement or changes in hemodynamic response often lead to imprecise dosing, especially in younger infants who may experience adverse events (e.g., hypotension) due to excess anesthesia. EEG directly measures the effects of anesthetics on the brain, which is the target end-organ responsible for inducing loss of consciousness. Over the past ten years, research on anesthesia and computational neuroscience has improved our understanding of intraoperative pediatric EEG monitoring and expanded the utility of EEG in clinical practice. We now have better insights into neurodevelopmental changes in the developing pediatric brain, functional connectivity, the use of non-proprietary EEG parameters to guide anesthetic dosing, epileptiform EEG changes during induction, EEG changes from spinal/regional anesthesia, EEG discontinuity, and the use of EEG to improve clinical outcomes. This review article summarizes the recent literature on EEG monitoring in perioperative pediatric anesthesia, highlighting several of the topics mentioned above.