基于新型泡沫评价器的高温、高压和高盐度储层发泡剂评价

IF 1.6 4区 工程技术 Q3 CHEMISTRY, APPLIED Journal of Surfactants and Detergents Pub Date : 2024-01-14 DOI:10.1002/jsde.12734
Longjie Li, Jijiang Ge, Xiaojuan Shi, Yan Pan, Hongbin Guo, Wenhui Wang, Jianhai Wang, Baolei Jiao
{"title":"基于新型泡沫评价器的高温、高压和高盐度储层发泡剂评价","authors":"Longjie Li,&nbsp;Jijiang Ge,&nbsp;Xiaojuan Shi,&nbsp;Yan Pan,&nbsp;Hongbin Guo,&nbsp;Wenhui Wang,&nbsp;Jianhai Wang,&nbsp;Baolei Jiao","doi":"10.1002/jsde.12734","DOIUrl":null,"url":null,"abstract":"<p>In this study, a novel high-temperature and high-pressure foam evaluator with variable diameters inner cell and cylinder flip function was designed on our own, which can solve the problems such as difficulties in foam generation and inaccurate determination of various foam parameters by the same type of instruments, through which the foaming performance of more than 10 betaine surfactants was evaluated. The results show that: (1) the higher the pressure, the higher the foaming rate of the foaming agent and the more stable the foam, but the foam stability of the foamers at low and high pressures, and low and high temperatures do not correspond exactly, and the foaming agent used needs to be screened under simulated reservoir conditions. (2) The comprehensive foaming performance of different types of foamers with different molecular structures found that hydroxy sulfobetaine with longer carbon chains has a relatively better foaming performance. Therefore, for the reservoir conditions of temperature 130°C, pressure 30 MPa, and salinity 22 × 10<sup>4</sup> mg/L, hydroxy sulfobetaine, which does not contain an amide group in the molecule, can be considered preferentially as a foaming agent. The results can guide the selection of foaming agents for high-temperature and high-salinity reservoirs.</p>","PeriodicalId":17083,"journal":{"name":"Journal of Surfactants and Detergents","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of foaming agents for high-temperature, high-pressure, and high-salinity reservoirs based on a new foam evaluator\",\"authors\":\"Longjie Li,&nbsp;Jijiang Ge,&nbsp;Xiaojuan Shi,&nbsp;Yan Pan,&nbsp;Hongbin Guo,&nbsp;Wenhui Wang,&nbsp;Jianhai Wang,&nbsp;Baolei Jiao\",\"doi\":\"10.1002/jsde.12734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a novel high-temperature and high-pressure foam evaluator with variable diameters inner cell and cylinder flip function was designed on our own, which can solve the problems such as difficulties in foam generation and inaccurate determination of various foam parameters by the same type of instruments, through which the foaming performance of more than 10 betaine surfactants was evaluated. The results show that: (1) the higher the pressure, the higher the foaming rate of the foaming agent and the more stable the foam, but the foam stability of the foamers at low and high pressures, and low and high temperatures do not correspond exactly, and the foaming agent used needs to be screened under simulated reservoir conditions. (2) The comprehensive foaming performance of different types of foamers with different molecular structures found that hydroxy sulfobetaine with longer carbon chains has a relatively better foaming performance. Therefore, for the reservoir conditions of temperature 130°C, pressure 30 MPa, and salinity 22 × 10<sup>4</sup> mg/L, hydroxy sulfobetaine, which does not contain an amide group in the molecule, can be considered preferentially as a foaming agent. The results can guide the selection of foaming agents for high-temperature and high-salinity reservoirs.</p>\",\"PeriodicalId\":17083,\"journal\":{\"name\":\"Journal of Surfactants and Detergents\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surfactants and Detergents\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsde.12734\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surfactants and Detergents","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsde.12734","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究自行设计了一种新型的高温高压泡沫评价仪,具有内腔直径可变和圆筒翻转功能,可以解决同类型仪器发泡困难和各种泡沫参数测定不准确等问题,通过该仪器对 10 多种甜菜碱表面活性剂的发泡性能进行了评价。结果表明(1)压力越高,起泡剂的起泡率越高,泡沫越稳定,但起泡剂在低压和高压、低温和高温下的泡沫稳定性并不完全一致,使用的起泡剂需要在模拟储层条件下进行筛选。(2)通过对不同类型、不同分子结构的发泡剂的发泡性能进行综合分析发现,碳链较长的羟基磺基甜菜碱的发泡性能相对较好。因此,在温度 130℃、压力 30 兆帕、盐度 22×104 毫克/升的储层条件下,分子中不含酰胺基的羟基磺基甜菜碱可优先考虑作为发泡剂。研究结果可指导高温和高盐度油藏发泡剂的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of foaming agents for high-temperature, high-pressure, and high-salinity reservoirs based on a new foam evaluator

In this study, a novel high-temperature and high-pressure foam evaluator with variable diameters inner cell and cylinder flip function was designed on our own, which can solve the problems such as difficulties in foam generation and inaccurate determination of various foam parameters by the same type of instruments, through which the foaming performance of more than 10 betaine surfactants was evaluated. The results show that: (1) the higher the pressure, the higher the foaming rate of the foaming agent and the more stable the foam, but the foam stability of the foamers at low and high pressures, and low and high temperatures do not correspond exactly, and the foaming agent used needs to be screened under simulated reservoir conditions. (2) The comprehensive foaming performance of different types of foamers with different molecular structures found that hydroxy sulfobetaine with longer carbon chains has a relatively better foaming performance. Therefore, for the reservoir conditions of temperature 130°C, pressure 30 MPa, and salinity 22 × 104 mg/L, hydroxy sulfobetaine, which does not contain an amide group in the molecule, can be considered preferentially as a foaming agent. The results can guide the selection of foaming agents for high-temperature and high-salinity reservoirs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Surfactants and Detergents
Journal of Surfactants and Detergents 工程技术-工程:化工
CiteScore
3.80
自引率
6.20%
发文量
68
审稿时长
4 months
期刊介绍: Journal of Surfactants and Detergents, a journal of the American Oil Chemists’ Society (AOCS) publishes scientific contributions in the surfactants and detergents area. This includes the basic and applied science of petrochemical and oleochemical surfactants, the development and performance of surfactants in all applications, as well as the development and manufacture of detergent ingredients and their formulation into finished products.
期刊最新文献
Issue Information Cloning, purification, and functional characterization of recombinant pullulanase from Bacillus cereusATCC 14579 for improved detergent performance Special Issue: Glycolipid biosurfactants: Synthesis, properties, and applications Synthesis and properties of sodium stearyl polyoxypropylene acetates Study on the Pickering emulsions stabilized by SiO2 nanoparticles for enhanced oil recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1