{"title":"人脂肪组织衍生干细胞可抑制川崎病小鼠模型中的冠状动脉血管炎。","authors":"Ryohei Fukunaga, Takahiro Ueda, Ryosuke Matsui, Toshikazu Itabashi, Ryuji Fukazawa, Noriko Nagi-Miura, Yasuhiko Itoh","doi":"10.1272/jnms.JNMS.2024_91-212","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adipose tissue-derived mesenchymal stem cells (ADSCs) are used for the treatment of various diseases because of their rapid proliferation and high anti-inflammatory and tissue repair properties. Kawasaki disease is a systemic vasculitis with coronary arteritis and aneurysms occurring in pediatric patients. In this study, we examined serologically and pathologically whether the administration of human ADSCs (hADSCs) to a mouse model of Kawasaki disease could suppress vasculitis.</p><p><strong>Methods: </strong>Candida albicans water-soluble fractions were intraperitoneally injected into DBA/2 mice for 5 consecutive days to generate a mouse model of Kawasaki disease. The model mice were intravenously administered hADSCs or phosphate-buffered saline (PBS). Serum samples collected on days 15 and 29 were used to compare cytokine levels. Mouse hearts dissected on day 29 were subjected to hematoxylin and eosin and immunohistological staining using Galectin-1 (Gal-1), a protein involved in cardiovascular homeostasis, and CD44, a cell-surface marker of hADSCs.</p><p><strong>Results: </strong>Comparison of inflammation-related cytokines showed a significant decrease in IL-1α expression at day 15 (P<0.05) and IL-6 expression at day 29 (P<0.01) in the hADSCs-treated group compared to the PBS group. Evaluation by hematoxylin and eosin staining showed decreased inflammatory cell infiltration and a tendency towards increased Gal-1 expression in the hADSCs group. CD44 expression was not observed in both the groups. The survival curve showed that the hADSCs group had a significantly longer survival time (P<0.05).</p><p><strong>Conclusions: </strong>The present experimental results indicate that hADSCs have an early anti-inflammatory effect, and that Gal-1 may be involved in preventing inflammation and reducing tissue damage.</p>","PeriodicalId":56076,"journal":{"name":"Journal of Nippon Medical School","volume":" ","pages":"218-226"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Adipose Tissue-Derived Stem Cells Inhibit Coronary Artery Vasculitis in a Mouse Model of Kawasaki Disease.\",\"authors\":\"Ryohei Fukunaga, Takahiro Ueda, Ryosuke Matsui, Toshikazu Itabashi, Ryuji Fukazawa, Noriko Nagi-Miura, Yasuhiko Itoh\",\"doi\":\"10.1272/jnms.JNMS.2024_91-212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Adipose tissue-derived mesenchymal stem cells (ADSCs) are used for the treatment of various diseases because of their rapid proliferation and high anti-inflammatory and tissue repair properties. Kawasaki disease is a systemic vasculitis with coronary arteritis and aneurysms occurring in pediatric patients. In this study, we examined serologically and pathologically whether the administration of human ADSCs (hADSCs) to a mouse model of Kawasaki disease could suppress vasculitis.</p><p><strong>Methods: </strong>Candida albicans water-soluble fractions were intraperitoneally injected into DBA/2 mice for 5 consecutive days to generate a mouse model of Kawasaki disease. The model mice were intravenously administered hADSCs or phosphate-buffered saline (PBS). Serum samples collected on days 15 and 29 were used to compare cytokine levels. Mouse hearts dissected on day 29 were subjected to hematoxylin and eosin and immunohistological staining using Galectin-1 (Gal-1), a protein involved in cardiovascular homeostasis, and CD44, a cell-surface marker of hADSCs.</p><p><strong>Results: </strong>Comparison of inflammation-related cytokines showed a significant decrease in IL-1α expression at day 15 (P<0.05) and IL-6 expression at day 29 (P<0.01) in the hADSCs-treated group compared to the PBS group. Evaluation by hematoxylin and eosin staining showed decreased inflammatory cell infiltration and a tendency towards increased Gal-1 expression in the hADSCs group. CD44 expression was not observed in both the groups. The survival curve showed that the hADSCs group had a significantly longer survival time (P<0.05).</p><p><strong>Conclusions: </strong>The present experimental results indicate that hADSCs have an early anti-inflammatory effect, and that Gal-1 may be involved in preventing inflammation and reducing tissue damage.</p>\",\"PeriodicalId\":56076,\"journal\":{\"name\":\"Journal of Nippon Medical School\",\"volume\":\" \",\"pages\":\"218-226\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nippon Medical School\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1272/jnms.JNMS.2024_91-212\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nippon Medical School","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1272/jnms.JNMS.2024_91-212","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Human Adipose Tissue-Derived Stem Cells Inhibit Coronary Artery Vasculitis in a Mouse Model of Kawasaki Disease.
Background: Adipose tissue-derived mesenchymal stem cells (ADSCs) are used for the treatment of various diseases because of their rapid proliferation and high anti-inflammatory and tissue repair properties. Kawasaki disease is a systemic vasculitis with coronary arteritis and aneurysms occurring in pediatric patients. In this study, we examined serologically and pathologically whether the administration of human ADSCs (hADSCs) to a mouse model of Kawasaki disease could suppress vasculitis.
Methods: Candida albicans water-soluble fractions were intraperitoneally injected into DBA/2 mice for 5 consecutive days to generate a mouse model of Kawasaki disease. The model mice were intravenously administered hADSCs or phosphate-buffered saline (PBS). Serum samples collected on days 15 and 29 were used to compare cytokine levels. Mouse hearts dissected on day 29 were subjected to hematoxylin and eosin and immunohistological staining using Galectin-1 (Gal-1), a protein involved in cardiovascular homeostasis, and CD44, a cell-surface marker of hADSCs.
Results: Comparison of inflammation-related cytokines showed a significant decrease in IL-1α expression at day 15 (P<0.05) and IL-6 expression at day 29 (P<0.01) in the hADSCs-treated group compared to the PBS group. Evaluation by hematoxylin and eosin staining showed decreased inflammatory cell infiltration and a tendency towards increased Gal-1 expression in the hADSCs group. CD44 expression was not observed in both the groups. The survival curve showed that the hADSCs group had a significantly longer survival time (P<0.05).
Conclusions: The present experimental results indicate that hADSCs have an early anti-inflammatory effect, and that Gal-1 may be involved in preventing inflammation and reducing tissue damage.
期刊介绍:
The international effort to understand, treat and control disease involve clinicians and researchers from many medical and biological science disciplines. The Journal of Nippon Medical School (JNMS) is the official journal of the Medical Association of Nippon Medical School and is dedicated to furthering international exchange of medical science experience and opinion. It provides an international forum for researchers in the fields of bascic and clinical medicine to introduce, discuss and exchange thier novel achievements in biomedical science and a platform for the worldwide dissemination and steering of biomedical knowledge for the benefit of human health and welfare. Properly reasoned discussions disciplined by appropriate references to existing bodies of knowledge or aimed at motivating the creation of such knowledge is the aim of the journal.