Edward Y S Chuang, Robin Wellmann, Franck L B Meijboom, Jens Tetens, Jörn Bennewitz
{"title":"模拟实施基因编辑的两用鸡育种计划。","authors":"Edward Y S Chuang, Robin Wellmann, Franck L B Meijboom, Jens Tetens, Jörn Bennewitz","doi":"10.1186/s12711-023-00874-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In spite of being controversial and raising ethical concerns, the application of gene editing is more likely to be accepted when it contributes to improving animal welfare. One of the animal welfare and ethical issues in chicken breeding is chick culling, the killing of the male layer chicks after hatching due to the poor fattening performance. Although establishing dual-purpose chicken lines could solve this problem, unfavorable genetic correlations between egg and meat production traits hindered their competitiveness. Although it is also controversial in ethical terms, gene editing may accelerate genetic progress in dual-purpose chicken and alleviate the ethical concerns from chick culling.</p><p><strong>Results: </strong>The simulation compared the utility improvement in dual-purpose use under two breeding schemes: one consisting in the improvement of the laying hens, and the second in the improvement of a synthetic line obtained from a layer broiler cross. In each breeding scheme, the breeding programs were simulated with and without gene editing. Polygenic breeding values and 500 simulated quantitative trait loci (QTL) with different levels of pleiotropy caused negative correlations between egg production, meat production, and overall health. The results of the simulation demonstrated that genetic gain could be accelerated by at most 81% for several generations if gene editing was used. The actual increase in genetic gain depended on the number of single nucleotide polymorphisms (SNPs) being edited per animal. The rate of genetic improvement became equal in scenarios with and without gene editing after 20 generations. This is because the remaining segregating QTL had small effects and their edition would have negative overall health effects from potential off-target edits. Although gene editing can improve genetic gain in quantitative traits, it can only be recommended as long as QTL with reasonable effect sizes are segregating and detectable.</p><p><strong>Conclusions: </strong>This simulation demonstrates the potential of gene editing to accelerate the simultaneous improvement of negatively correlated traits. When the risk of negative consequences from gene editing persists, the number of SNPs to be edited should be chosen carefully to obtain the optimal genetic gain.</p>","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"56 1","pages":"7"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795215/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simulation of dual-purpose chicken breeding programs implementing gene editing.\",\"authors\":\"Edward Y S Chuang, Robin Wellmann, Franck L B Meijboom, Jens Tetens, Jörn Bennewitz\",\"doi\":\"10.1186/s12711-023-00874-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In spite of being controversial and raising ethical concerns, the application of gene editing is more likely to be accepted when it contributes to improving animal welfare. One of the animal welfare and ethical issues in chicken breeding is chick culling, the killing of the male layer chicks after hatching due to the poor fattening performance. Although establishing dual-purpose chicken lines could solve this problem, unfavorable genetic correlations between egg and meat production traits hindered their competitiveness. Although it is also controversial in ethical terms, gene editing may accelerate genetic progress in dual-purpose chicken and alleviate the ethical concerns from chick culling.</p><p><strong>Results: </strong>The simulation compared the utility improvement in dual-purpose use under two breeding schemes: one consisting in the improvement of the laying hens, and the second in the improvement of a synthetic line obtained from a layer broiler cross. In each breeding scheme, the breeding programs were simulated with and without gene editing. Polygenic breeding values and 500 simulated quantitative trait loci (QTL) with different levels of pleiotropy caused negative correlations between egg production, meat production, and overall health. The results of the simulation demonstrated that genetic gain could be accelerated by at most 81% for several generations if gene editing was used. The actual increase in genetic gain depended on the number of single nucleotide polymorphisms (SNPs) being edited per animal. The rate of genetic improvement became equal in scenarios with and without gene editing after 20 generations. This is because the remaining segregating QTL had small effects and their edition would have negative overall health effects from potential off-target edits. Although gene editing can improve genetic gain in quantitative traits, it can only be recommended as long as QTL with reasonable effect sizes are segregating and detectable.</p><p><strong>Conclusions: </strong>This simulation demonstrates the potential of gene editing to accelerate the simultaneous improvement of negatively correlated traits. When the risk of negative consequences from gene editing persists, the number of SNPs to be edited should be chosen carefully to obtain the optimal genetic gain.</p>\",\"PeriodicalId\":55120,\"journal\":{\"name\":\"Genetics Selection Evolution\",\"volume\":\"56 1\",\"pages\":\"7\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795215/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics Selection Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12711-023-00874-3\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-023-00874-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Simulation of dual-purpose chicken breeding programs implementing gene editing.
Background: In spite of being controversial and raising ethical concerns, the application of gene editing is more likely to be accepted when it contributes to improving animal welfare. One of the animal welfare and ethical issues in chicken breeding is chick culling, the killing of the male layer chicks after hatching due to the poor fattening performance. Although establishing dual-purpose chicken lines could solve this problem, unfavorable genetic correlations between egg and meat production traits hindered their competitiveness. Although it is also controversial in ethical terms, gene editing may accelerate genetic progress in dual-purpose chicken and alleviate the ethical concerns from chick culling.
Results: The simulation compared the utility improvement in dual-purpose use under two breeding schemes: one consisting in the improvement of the laying hens, and the second in the improvement of a synthetic line obtained from a layer broiler cross. In each breeding scheme, the breeding programs were simulated with and without gene editing. Polygenic breeding values and 500 simulated quantitative trait loci (QTL) with different levels of pleiotropy caused negative correlations between egg production, meat production, and overall health. The results of the simulation demonstrated that genetic gain could be accelerated by at most 81% for several generations if gene editing was used. The actual increase in genetic gain depended on the number of single nucleotide polymorphisms (SNPs) being edited per animal. The rate of genetic improvement became equal in scenarios with and without gene editing after 20 generations. This is because the remaining segregating QTL had small effects and their edition would have negative overall health effects from potential off-target edits. Although gene editing can improve genetic gain in quantitative traits, it can only be recommended as long as QTL with reasonable effect sizes are segregating and detectable.
Conclusions: This simulation demonstrates the potential of gene editing to accelerate the simultaneous improvement of negatively correlated traits. When the risk of negative consequences from gene editing persists, the number of SNPs to be edited should be chosen carefully to obtain the optimal genetic gain.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.