干式离合器的超细颗粒排放:数量浓度、粒度分布和化学成分

IF 2.8 Q3 ENVIRONMENTAL SCIENCES Environmental science: atmospheres Pub Date : 2023-11-21 DOI:10.1039/D3EA00127J
Rikard Hjelm, Yezhe Lyu, Alessandro Mancini, Bozhena Tsyupa, Minghui Tu, Ulf Olofsson and Jens Wahlström
{"title":"干式离合器的超细颗粒排放:数量浓度、粒度分布和化学成分","authors":"Rikard Hjelm, Yezhe Lyu, Alessandro Mancini, Bozhena Tsyupa, Minghui Tu, Ulf Olofsson and Jens Wahlström","doi":"10.1039/D3EA00127J","DOIUrl":null,"url":null,"abstract":"<p >Non-exhaust sources, such as brakes, tyres, roads, and clutches, emit a large portion of airborne particles in road transportation, from ultrafine to coarse sizes. While airborne wear particle emissions from brakes and road-tyre contacts have been studied extensively, emissions from clutches have been overlooked. A preliminary study using a novel test rig has indicated that dry clutches also emit airborne wear particles. This paper presents a multi-method for the assessment of ultrafine particles from dry clutches regarding the number concentration, size distribution and chemical composition. The results show that ultrafine particles are emitted both during run-in and at the steady state, featuring a bi-modal size distribution. Elementary analysis shows that the particles consist of several elements, predominately iron, silicon, and sulfur. It can be concluded from this study that ultrafine particles are always generated when the clutch is operated.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 1","pages":" 35-42"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00127j?page=search","citationCount":"0","resultStr":"{\"title\":\"Ultrafine particle emissions from dry clutches: number concentration, size distribution and chemical composition\",\"authors\":\"Rikard Hjelm, Yezhe Lyu, Alessandro Mancini, Bozhena Tsyupa, Minghui Tu, Ulf Olofsson and Jens Wahlström\",\"doi\":\"10.1039/D3EA00127J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Non-exhaust sources, such as brakes, tyres, roads, and clutches, emit a large portion of airborne particles in road transportation, from ultrafine to coarse sizes. While airborne wear particle emissions from brakes and road-tyre contacts have been studied extensively, emissions from clutches have been overlooked. A preliminary study using a novel test rig has indicated that dry clutches also emit airborne wear particles. This paper presents a multi-method for the assessment of ultrafine particles from dry clutches regarding the number concentration, size distribution and chemical composition. The results show that ultrafine particles are emitted both during run-in and at the steady state, featuring a bi-modal size distribution. Elementary analysis shows that the particles consist of several elements, predominately iron, silicon, and sulfur. It can be concluded from this study that ultrafine particles are always generated when the clutch is operated.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 1\",\"pages\":\" 35-42\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00127j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d3ea00127j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d3ea00127j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在道路运输过程中,制动器、轮胎、道路和离合器等非排气源排放了很大一部分从超细到粗粒度的空气传播颗粒。虽然对制动器和路面-轮胎接触产生的气载磨损颗粒排放进行了广泛研究,但离合器产生的排放却被忽视了。一项使用新型测试设备进行的初步研究表明,干式离合器也会排放空气中的磨损颗粒。本文介绍了一种评估干式离合器超细颗粒数量浓度、尺寸分布和化学成分的多种方法。结果表明,超细颗粒在磨合期和稳定状态下都会排放,其大小分布呈双模式。基本分析表明,颗粒由多种元素组成,主要是铁、硅和硫。从这项研究中可以得出结论,离合器工作时总会产生超细颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrafine particle emissions from dry clutches: number concentration, size distribution and chemical composition

Non-exhaust sources, such as brakes, tyres, roads, and clutches, emit a large portion of airborne particles in road transportation, from ultrafine to coarse sizes. While airborne wear particle emissions from brakes and road-tyre contacts have been studied extensively, emissions from clutches have been overlooked. A preliminary study using a novel test rig has indicated that dry clutches also emit airborne wear particles. This paper presents a multi-method for the assessment of ultrafine particles from dry clutches regarding the number concentration, size distribution and chemical composition. The results show that ultrafine particles are emitted both during run-in and at the steady state, featuring a bi-modal size distribution. Elementary analysis shows that the particles consist of several elements, predominately iron, silicon, and sulfur. It can be concluded from this study that ultrafine particles are always generated when the clutch is operated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Back cover Real-time chemical characterization of primary and aged biomass burning aerosols derived from sub-Saharan African biomass fuels in smoldering fires. A framework for describing and classifying methane reporting requirements, emission sources, and monitoring methods† Does gas-phase sulfur dioxide remove films of atmosphere-extracted organic material from the aqueous aerosol air–water interface?† Enhanced detection of aromatic oxidation products using NO3 - chemical ionization mass spectrometry with limited nitric acid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1