Sakie Kawsar, Sourav Biswas, Muntasir Noor and Md. Shahid Mamun
{"title":"调查 COPERT 5.5 排放软件在孟加拉国的适用性并编制全国范围的车辆排放清单†。","authors":"Sakie Kawsar, Sourav Biswas, Muntasir Noor and Md. Shahid Mamun","doi":"10.1039/D3EA00047H","DOIUrl":null,"url":null,"abstract":"<p >The primary step to minimizing air pollution effects owing to motorized vehicles in Bangladesh is to establish accurate emission modelling methods. The total yearly amount of the primary greenhouse gas, carbon dioxide (CO<small><sub>2</sub></small>), emitted in Bangladesh up to 2020 was obtained by the World Bank. The percentage of total CO<small><sub>2</sub></small> emissions released from the transport sector in Bangladesh was reportedly 14.2% in 2014 and 15% in 2020; 90% of this was from on-road vehicles. So, approximately 13% of the total amount of CO<small><sub>2</sub></small> emissions in Bangladesh during those years found in the World Bank data can be considered to have come from its road transportation. However, Bangladesh still does not have a vehicular emission model of its own, so there is no straightforward method to quantify the harmful gases released by automobiles alone in this country as of yet. The purpose of this research is to fill this gap. This research investigated the applicability of the European emission model Computer Program to Estimate Emissions from Road Traffic Version 5.5 (COPERT 5.5) for Bangladesh. The yearly production of CO<small><sub>2</sub></small> from different vehicular classes in Bangladesh from 2016 to 2020 was computed using COPERT 5.5, and estimations from World Bank data were used as a benchmark. The results of this study suggest that COPERT 5.5 emission software may be applicable to Bangladesh. This research also suggested updated emission factors for CO<small><sub>2</sub></small> for different vehicle categories yielded by this software and developed countrywide annual vehicular emission inventories of CO<small><sub>2</sub></small> and 12 other major pollutants from 2016 to 2020.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 1","pages":" 57-72"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00047h?page=search","citationCount":"0","resultStr":"{\"title\":\"Investigating the applicability of COPERT 5.5 emission software in Bangladesh and developing countrywide vehicular emission inventories†\",\"authors\":\"Sakie Kawsar, Sourav Biswas, Muntasir Noor and Md. Shahid Mamun\",\"doi\":\"10.1039/D3EA00047H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The primary step to minimizing air pollution effects owing to motorized vehicles in Bangladesh is to establish accurate emission modelling methods. The total yearly amount of the primary greenhouse gas, carbon dioxide (CO<small><sub>2</sub></small>), emitted in Bangladesh up to 2020 was obtained by the World Bank. The percentage of total CO<small><sub>2</sub></small> emissions released from the transport sector in Bangladesh was reportedly 14.2% in 2014 and 15% in 2020; 90% of this was from on-road vehicles. So, approximately 13% of the total amount of CO<small><sub>2</sub></small> emissions in Bangladesh during those years found in the World Bank data can be considered to have come from its road transportation. However, Bangladesh still does not have a vehicular emission model of its own, so there is no straightforward method to quantify the harmful gases released by automobiles alone in this country as of yet. The purpose of this research is to fill this gap. This research investigated the applicability of the European emission model Computer Program to Estimate Emissions from Road Traffic Version 5.5 (COPERT 5.5) for Bangladesh. The yearly production of CO<small><sub>2</sub></small> from different vehicular classes in Bangladesh from 2016 to 2020 was computed using COPERT 5.5, and estimations from World Bank data were used as a benchmark. The results of this study suggest that COPERT 5.5 emission software may be applicable to Bangladesh. This research also suggested updated emission factors for CO<small><sub>2</sub></small> for different vehicle categories yielded by this software and developed countrywide annual vehicular emission inventories of CO<small><sub>2</sub></small> and 12 other major pollutants from 2016 to 2020.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 1\",\"pages\":\" 57-72\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00047h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d3ea00047h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d3ea00047h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Investigating the applicability of COPERT 5.5 emission software in Bangladesh and developing countrywide vehicular emission inventories†
The primary step to minimizing air pollution effects owing to motorized vehicles in Bangladesh is to establish accurate emission modelling methods. The total yearly amount of the primary greenhouse gas, carbon dioxide (CO2), emitted in Bangladesh up to 2020 was obtained by the World Bank. The percentage of total CO2 emissions released from the transport sector in Bangladesh was reportedly 14.2% in 2014 and 15% in 2020; 90% of this was from on-road vehicles. So, approximately 13% of the total amount of CO2 emissions in Bangladesh during those years found in the World Bank data can be considered to have come from its road transportation. However, Bangladesh still does not have a vehicular emission model of its own, so there is no straightforward method to quantify the harmful gases released by automobiles alone in this country as of yet. The purpose of this research is to fill this gap. This research investigated the applicability of the European emission model Computer Program to Estimate Emissions from Road Traffic Version 5.5 (COPERT 5.5) for Bangladesh. The yearly production of CO2 from different vehicular classes in Bangladesh from 2016 to 2020 was computed using COPERT 5.5, and estimations from World Bank data were used as a benchmark. The results of this study suggest that COPERT 5.5 emission software may be applicable to Bangladesh. This research also suggested updated emission factors for CO2 for different vehicle categories yielded by this software and developed countrywide annual vehicular emission inventories of CO2 and 12 other major pollutants from 2016 to 2020.