Seyed Shahab Eshaghinia, Afshin Taghvaeipour, Mohammad Mohammadi Aghdam, Hassan Rivaz
{"title":"使用基于有限元的反演方法进行软组织超声弹性成像。","authors":"Seyed Shahab Eshaghinia, Afshin Taghvaeipour, Mohammad Mohammadi Aghdam, Hassan Rivaz","doi":"10.1177/09544119231224674","DOIUrl":null,"url":null,"abstract":"<p><p>Elastography is a medical imaging modality that enables visualization of tissue stiffness. It involves quasi-static or harmonic mechanical stimulation of the tissue to generate a displacement field which is used as input in an inversion algorithm to reconstruct tissue elastic modulus. This paper considers quasi-static stimulation and presents a novel inversion technique for elastic modulus reconstruction. The technique follows an inverse finite element framework. Reconstructed elastic modulus maps produced in this technique do not depend on the initial guess, while it is computationally less involved than iterative reconstruction approaches. The method was first evaluated using simulated data (in-silico) where modulus reconstruction's sensitivity to displacement noise and elastic modulus was assessed. To demonstrate the method's performance, displacement fields of two tissue mimicking phantoms determined using three different motion tracking techniques were used as input to the developed elastography method to reconstruct the distribution of relative elastic modulus of the inclusion to background tissue. In the next stage, the relative elastic modulus of three clinical cases pertaining to liver cancer patient were determined. The obtained results demonstrate reasonably high elastic modulus reconstruction accuracy in comparison with similar direct methods. Also it is associated with reduced computational cost in comparison with iterative techniques, which suffer from convergence and uniqueness issues, following the same formulation concept. Moreover, in comparison with other methods which need initial guess, the presented method does not require initial guess while it is easy to understand and implement.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"271-287"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the soft tissue ultrasound elastography using FEM based inversion approach.\",\"authors\":\"Seyed Shahab Eshaghinia, Afshin Taghvaeipour, Mohammad Mohammadi Aghdam, Hassan Rivaz\",\"doi\":\"10.1177/09544119231224674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elastography is a medical imaging modality that enables visualization of tissue stiffness. It involves quasi-static or harmonic mechanical stimulation of the tissue to generate a displacement field which is used as input in an inversion algorithm to reconstruct tissue elastic modulus. This paper considers quasi-static stimulation and presents a novel inversion technique for elastic modulus reconstruction. The technique follows an inverse finite element framework. Reconstructed elastic modulus maps produced in this technique do not depend on the initial guess, while it is computationally less involved than iterative reconstruction approaches. The method was first evaluated using simulated data (in-silico) where modulus reconstruction's sensitivity to displacement noise and elastic modulus was assessed. To demonstrate the method's performance, displacement fields of two tissue mimicking phantoms determined using three different motion tracking techniques were used as input to the developed elastography method to reconstruct the distribution of relative elastic modulus of the inclusion to background tissue. In the next stage, the relative elastic modulus of three clinical cases pertaining to liver cancer patient were determined. The obtained results demonstrate reasonably high elastic modulus reconstruction accuracy in comparison with similar direct methods. Also it is associated with reduced computational cost in comparison with iterative techniques, which suffer from convergence and uniqueness issues, following the same formulation concept. Moreover, in comparison with other methods which need initial guess, the presented method does not require initial guess while it is easy to understand and implement.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"271-287\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119231224674\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119231224674","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
On the soft tissue ultrasound elastography using FEM based inversion approach.
Elastography is a medical imaging modality that enables visualization of tissue stiffness. It involves quasi-static or harmonic mechanical stimulation of the tissue to generate a displacement field which is used as input in an inversion algorithm to reconstruct tissue elastic modulus. This paper considers quasi-static stimulation and presents a novel inversion technique for elastic modulus reconstruction. The technique follows an inverse finite element framework. Reconstructed elastic modulus maps produced in this technique do not depend on the initial guess, while it is computationally less involved than iterative reconstruction approaches. The method was first evaluated using simulated data (in-silico) where modulus reconstruction's sensitivity to displacement noise and elastic modulus was assessed. To demonstrate the method's performance, displacement fields of two tissue mimicking phantoms determined using three different motion tracking techniques were used as input to the developed elastography method to reconstruct the distribution of relative elastic modulus of the inclusion to background tissue. In the next stage, the relative elastic modulus of three clinical cases pertaining to liver cancer patient were determined. The obtained results demonstrate reasonably high elastic modulus reconstruction accuracy in comparison with similar direct methods. Also it is associated with reduced computational cost in comparison with iterative techniques, which suffer from convergence and uniqueness issues, following the same formulation concept. Moreover, in comparison with other methods which need initial guess, the presented method does not require initial guess while it is easy to understand and implement.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.