在缺血缺氧性脑病新生大鼠模型中,卡他明黄通过抑制海马神经元的铁突变减轻脑损伤。

IF 1.8 4区 医学 Q4 NEUROSCIENCES Translational Neuroscience Pub Date : 2023-12-31 eCollection Date: 2023-01-01 DOI:10.1515/tnsci-2022-0331
Yuanyu Zhou, Yuebin Wang, Xiaoqing Wu, Junjie Wu, Jianhui Yan, Wei Su
{"title":"在缺血缺氧性脑病新生大鼠模型中,卡他明黄通过抑制海马神经元的铁突变减轻脑损伤。","authors":"Yuanyu Zhou, Yuebin Wang, Xiaoqing Wu, Junjie Wu, Jianhui Yan, Wei Su","doi":"10.1515/tnsci-2022-0331","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic-ischemic encephalopathy (HIE) is a common neurological disorder characterized by ischemia and hypoxia in the perinatal period, which seriously affects the growth and development of newborns. To date, there is no specific drug for the treatment of HIE. Previous studies have shown that ferroptosis plays an important role in the pathogenesis of HIE. Carthamin yellow (CY) is believed to have antioxidant and anti-inflammatory effects. However, no studies have reported the role of CY in ferroptosis in HIE <i>in vivo</i> until now. The aim of this study was to investigate the effect and mechanism of CY on HIE <i>in vivo</i> and to provide an experimental basis for the clinical treatment of HIE. The results demonstrated that CY increased the expression of NeuN in the neonatal rat hypoxic-ischemic brain damage (HIBD) model. Further exploration revealed that CY increased the expression of glutathione peroxidase 4 and ferritin heavy chain 1 while it decreased the expression of PTGS2 and ACSL2. Moreover, CY decreased malondialdehyde expression and increased superoxide dismutase and glutathione expression <i>in vivo</i>. The findings also indicated that CY downregulated the expression of Nrf2 and Keap-1. In conclusion, this study demonstrated that CY attenuated brain injury in an experimental HIBD model, potentially by alleviating hippocampal neuronal ferroptosis through inhibition of the Nrf2/Keap-1 signaling pathway. These findings provide a novel therapeutic strategy for the clinical treatment of HIE.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795005/pdf/","citationCount":"0","resultStr":"{\"title\":\"Carthamin yellow attenuates brain injury in a neonatal rat model of ischemic-hypoxic encephalopathy by inhibiting neuronal ferroptosis in the hippocampus.\",\"authors\":\"Yuanyu Zhou, Yuebin Wang, Xiaoqing Wu, Junjie Wu, Jianhui Yan, Wei Su\",\"doi\":\"10.1515/tnsci-2022-0331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxic-ischemic encephalopathy (HIE) is a common neurological disorder characterized by ischemia and hypoxia in the perinatal period, which seriously affects the growth and development of newborns. To date, there is no specific drug for the treatment of HIE. Previous studies have shown that ferroptosis plays an important role in the pathogenesis of HIE. Carthamin yellow (CY) is believed to have antioxidant and anti-inflammatory effects. However, no studies have reported the role of CY in ferroptosis in HIE <i>in vivo</i> until now. The aim of this study was to investigate the effect and mechanism of CY on HIE <i>in vivo</i> and to provide an experimental basis for the clinical treatment of HIE. The results demonstrated that CY increased the expression of NeuN in the neonatal rat hypoxic-ischemic brain damage (HIBD) model. Further exploration revealed that CY increased the expression of glutathione peroxidase 4 and ferritin heavy chain 1 while it decreased the expression of PTGS2 and ACSL2. Moreover, CY decreased malondialdehyde expression and increased superoxide dismutase and glutathione expression <i>in vivo</i>. The findings also indicated that CY downregulated the expression of Nrf2 and Keap-1. In conclusion, this study demonstrated that CY attenuated brain injury in an experimental HIBD model, potentially by alleviating hippocampal neuronal ferroptosis through inhibition of the Nrf2/Keap-1 signaling pathway. These findings provide a novel therapeutic strategy for the clinical treatment of HIE.</p>\",\"PeriodicalId\":23227,\"journal\":{\"name\":\"Translational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/tnsci-2022-0331\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0331","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

缺氧缺血性脑病(HIE)是一种常见的神经系统疾病,其特点是围产期缺血缺氧,严重影响新生儿的生长发育。迄今为止,还没有治疗 HIE 的特效药物。以往的研究表明,高铁血症在 HIE 的发病机制中起着重要作用。卡他明黄(CY)被认为具有抗氧化和抗炎作用。然而,迄今为止还没有研究报道 CY 在 HIE 体内铁蛋白沉积中的作用。本研究旨在探讨 CY 对体内 HIE 的影响和机制,为临床治疗 HIE 提供实验依据。结果表明,在新生大鼠缺氧缺血性脑损伤(HIBD)模型中,CY能增加NeuN的表达。进一步研究发现,CY能增加谷胱甘肽过氧化物酶4和铁蛋白重链1的表达,同时降低PTGS2和ACSL2的表达。此外,CY 还能降低丙二醛的表达,增加超氧化物歧化酶和谷胱甘肽的表达。研究结果还表明,CY 下调了 Nrf2 和 Keap-1 的表达。总之,本研究表明,CY 可通过抑制 Nrf2/Keap-1 信号通路减轻海马神经元铁突变,从而减轻实验性 HIBD 模型的脑损伤。这些发现为临床治疗 HIE 提供了一种新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carthamin yellow attenuates brain injury in a neonatal rat model of ischemic-hypoxic encephalopathy by inhibiting neuronal ferroptosis in the hippocampus.

Hypoxic-ischemic encephalopathy (HIE) is a common neurological disorder characterized by ischemia and hypoxia in the perinatal period, which seriously affects the growth and development of newborns. To date, there is no specific drug for the treatment of HIE. Previous studies have shown that ferroptosis plays an important role in the pathogenesis of HIE. Carthamin yellow (CY) is believed to have antioxidant and anti-inflammatory effects. However, no studies have reported the role of CY in ferroptosis in HIE in vivo until now. The aim of this study was to investigate the effect and mechanism of CY on HIE in vivo and to provide an experimental basis for the clinical treatment of HIE. The results demonstrated that CY increased the expression of NeuN in the neonatal rat hypoxic-ischemic brain damage (HIBD) model. Further exploration revealed that CY increased the expression of glutathione peroxidase 4 and ferritin heavy chain 1 while it decreased the expression of PTGS2 and ACSL2. Moreover, CY decreased malondialdehyde expression and increased superoxide dismutase and glutathione expression in vivo. The findings also indicated that CY downregulated the expression of Nrf2 and Keap-1. In conclusion, this study demonstrated that CY attenuated brain injury in an experimental HIBD model, potentially by alleviating hippocampal neuronal ferroptosis through inhibition of the Nrf2/Keap-1 signaling pathway. These findings provide a novel therapeutic strategy for the clinical treatment of HIE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
4.80%
发文量
45
审稿时长
>12 weeks
期刊介绍: Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.
期刊最新文献
Activating α7nAChR suppresses systemic inflammation by mitigating neuroinflammation of the medullary visceral zone in sepsis in a rat model. Amelioration of behavioral and histological impairments in somatosensory cortex injury rats by limbal mesenchymal stem cell transplantation. Thyroid hormone T3 induces Fyn modification and modulates palmitoyltransferase gene expression through αvβ3 integrin receptor in PC12 cells during hypoxia. Corrigendum to "The ACE2/Ang-(1-7)/MasR axis alleviates brain injury after cardiopulmonary resuscitation in rabbits by activating PI3K/Akt signaling". Acute ischemic STROKE - from laboratory to the Patient's BED (STROKELABED): A translational approach to reperfusion injury. Study Protocol.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1