在逐渐恶化的天气条件下对航空图像进行连续域适应性调整

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-01-01 DOI:10.1117/1.jrs.18.016504
Chowdhury Sadman Jahan, Andreas Savakis
{"title":"在逐渐恶化的天气条件下对航空图像进行连续域适应性调整","authors":"Chowdhury Sadman Jahan, Andreas Savakis","doi":"10.1117/1.jrs.18.016504","DOIUrl":null,"url":null,"abstract":"Domain adaptation (DA) aims to reduce the effects of the distribution gap between the source domain where a model is trained and the target domain where the model is deployed. When a deep learning model is deployed on an aerial platform, it may face gradually degrading weather conditions during its operation, leading to gradually widening gaps between the source training data and the encountered target data. Because there are no existing datasets with gradually degrading weather, we generate four datasets by introducing progressively worsening clouds and snowflakes on aerial images. During deployment, unlabeled target domain samples are acquired in small batches, and adaptation is performed continually with each batch of incoming data, instead of assuming that the entire target dataset is available. We evaluate two continual DA models against a baseline standard DA model under gradually degrading conditions. All of these models are source-free, i.e., they operate without access to the source training data during adaptation. We utilize both convolutional and transformer architectures in the models for comparison. In our experiments, we find that continual DA methods perform better but sometimes encounter stability issues during adaptation. We propose gradient normalization as a simple but effective solution for managing instability during adaptation.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continual domain adaptation on aerial images under gradually degrading weather\",\"authors\":\"Chowdhury Sadman Jahan, Andreas Savakis\",\"doi\":\"10.1117/1.jrs.18.016504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain adaptation (DA) aims to reduce the effects of the distribution gap between the source domain where a model is trained and the target domain where the model is deployed. When a deep learning model is deployed on an aerial platform, it may face gradually degrading weather conditions during its operation, leading to gradually widening gaps between the source training data and the encountered target data. Because there are no existing datasets with gradually degrading weather, we generate four datasets by introducing progressively worsening clouds and snowflakes on aerial images. During deployment, unlabeled target domain samples are acquired in small batches, and adaptation is performed continually with each batch of incoming data, instead of assuming that the entire target dataset is available. We evaluate two continual DA models against a baseline standard DA model under gradually degrading conditions. All of these models are source-free, i.e., they operate without access to the source training data during adaptation. We utilize both convolutional and transformer architectures in the models for comparison. In our experiments, we find that continual DA methods perform better but sometimes encounter stability issues during adaptation. We propose gradient normalization as a simple but effective solution for managing instability during adaptation.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.016504\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.016504","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

域适应(DA)旨在减少模型训练的源域与模型部署的目标域之间的分布差距所造成的影响。当深度学习模型部署在航空平台上时,它在运行过程中可能会面临逐渐恶化的天气条件,从而导致源训练数据与所遇到的目标数据之间的差距逐渐扩大。由于现有数据集没有逐渐恶化的天气状况,我们通过在航空图像上引入逐渐恶化的云层和雪花生成了四个数据集。在部署过程中,未标注的目标域样本会被小批量获取,而适应过程会随着每批数据的输入而持续进行,而不是假设整个目标数据集都是可用的。我们在逐渐退化的条件下评估了两个持续数据分析模型和一个基准标准数据分析模型。所有这些模型都是无源的,也就是说,它们在适应过程中无需访问源训练数据。我们在模型中使用卷积和变换器架构进行比较。在实验中,我们发现持续性 DA 方法的性能更好,但在适应过程中有时会遇到稳定性问题。我们提出了梯度归一化方法,作为在适应过程中管理不稳定性的一种简单而有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continual domain adaptation on aerial images under gradually degrading weather
Domain adaptation (DA) aims to reduce the effects of the distribution gap between the source domain where a model is trained and the target domain where the model is deployed. When a deep learning model is deployed on an aerial platform, it may face gradually degrading weather conditions during its operation, leading to gradually widening gaps between the source training data and the encountered target data. Because there are no existing datasets with gradually degrading weather, we generate four datasets by introducing progressively worsening clouds and snowflakes on aerial images. During deployment, unlabeled target domain samples are acquired in small batches, and adaptation is performed continually with each batch of incoming data, instead of assuming that the entire target dataset is available. We evaluate two continual DA models against a baseline standard DA model under gradually degrading conditions. All of these models are source-free, i.e., they operate without access to the source training data during adaptation. We utilize both convolutional and transformer architectures in the models for comparison. In our experiments, we find that continual DA methods perform better but sometimes encounter stability issues during adaptation. We propose gradient normalization as a simple but effective solution for managing instability during adaptation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Few-shot synthetic aperture radar object detection algorithm based on meta-learning and variational inference Object-based strategy for generating high-resolution four-dimensional thermal surface models of buildings based on integration of visible and thermal unmanned aerial vehicle imagery Frequent oversights in on-orbit modulation transfer function estimation of optical imager onboard EO satellites Comprehensive comparison of different gridded precipitation products over geographic regions of Türkiye Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1