Vera van Zoest , Karl Lindberg , Georgios Varotsis , Frank Badu Osei , Tove Fall
{"title":"预测 COVID-19 住院情况:医疗热线、检测阳性率和疫苗接种覆盖率的重要性","authors":"Vera van Zoest , Karl Lindberg , Georgios Varotsis , Frank Badu Osei , Tove Fall","doi":"10.1016/j.sste.2024.100636","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we developed a negative binomial regression model for one-week ahead spatio-temporal predictions of the number of COVID-19 hospitalizations in Uppsala County, Sweden. Our model utilized weekly aggregated data on testing, vaccination, and calls to the national healthcare hotline. Variable importance analysis revealed that calls to the national healthcare hotline were the most important contributor to prediction performance when predicting COVID-19 hospitalizations. Our results support the importance of early testing, systematic registration of test results, and the value of healthcare hotline data in predicting hospitalizations. The proposed models may be applied to studies modeling hospitalizations of other viral respiratory infections in space and time assuming count data are overdispersed. Our suggested variable importance analysis enables the calculation of the effects on the predictive performance of each covariate. This can inform decisions about which types of data should be prioritized, thereby facilitating the allocation of healthcare resources.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"48 ","pages":"Article 100636"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877584524000030/pdfft?md5=e41ddfc5e71a08c21d18542145e8cd5c&pid=1-s2.0-S1877584524000030-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting COVID-19 hospitalizations: The importance of healthcare hotlines, test positivity rates and vaccination coverage\",\"authors\":\"Vera van Zoest , Karl Lindberg , Georgios Varotsis , Frank Badu Osei , Tove Fall\",\"doi\":\"10.1016/j.sste.2024.100636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we developed a negative binomial regression model for one-week ahead spatio-temporal predictions of the number of COVID-19 hospitalizations in Uppsala County, Sweden. Our model utilized weekly aggregated data on testing, vaccination, and calls to the national healthcare hotline. Variable importance analysis revealed that calls to the national healthcare hotline were the most important contributor to prediction performance when predicting COVID-19 hospitalizations. Our results support the importance of early testing, systematic registration of test results, and the value of healthcare hotline data in predicting hospitalizations. The proposed models may be applied to studies modeling hospitalizations of other viral respiratory infections in space and time assuming count data are overdispersed. Our suggested variable importance analysis enables the calculation of the effects on the predictive performance of each covariate. This can inform decisions about which types of data should be prioritized, thereby facilitating the allocation of healthcare resources.</p></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"48 \",\"pages\":\"Article 100636\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000030/pdfft?md5=e41ddfc5e71a08c21d18542145e8cd5c&pid=1-s2.0-S1877584524000030-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Predicting COVID-19 hospitalizations: The importance of healthcare hotlines, test positivity rates and vaccination coverage
In this study, we developed a negative binomial regression model for one-week ahead spatio-temporal predictions of the number of COVID-19 hospitalizations in Uppsala County, Sweden. Our model utilized weekly aggregated data on testing, vaccination, and calls to the national healthcare hotline. Variable importance analysis revealed that calls to the national healthcare hotline were the most important contributor to prediction performance when predicting COVID-19 hospitalizations. Our results support the importance of early testing, systematic registration of test results, and the value of healthcare hotline data in predicting hospitalizations. The proposed models may be applied to studies modeling hospitalizations of other viral respiratory infections in space and time assuming count data are overdispersed. Our suggested variable importance analysis enables the calculation of the effects on the predictive performance of each covariate. This can inform decisions about which types of data should be prioritized, thereby facilitating the allocation of healthcare resources.