Yu. D. Filatov, V. I. Sidorko, S. V. Kovalev, A. Y. Boyarintsev, V. A. Kovalev, O. Y. Yurchyshyn
{"title":"聚合物光学材料抛光过程中抛光粉磨损纳米颗粒对污泥纳米颗粒的散射作用","authors":"Yu. D. Filatov, V. I. Sidorko, S. V. Kovalev, A. Y. Boyarintsev, V. A. Kovalev, O. Y. Yurchyshyn","doi":"10.3103/S1063457623060035","DOIUrl":null,"url":null,"abstract":"<p>As a result of studying the regularities of interaction between polishing powder wear and sludge nanoparticles during the polishing of polymer optical materials by disperse systems of micro- and nanopowders on the basis of <i>ab initio</i> calculations according to the quantum scattering theory, it has been established that polishing powder wear nanoparticles are elastically scattered on sludge nanoparticles exclusively at angles of 0° and 180° over the differential scattering cross section 10<sup>4</sup>–10<sup>5</sup> times larger than for other angles. It has been shown that the total cross section for the scattering of wear nanoparticles on sludge nanoparticles exponentially decreases with an increase in their average size and grows with increasing concentration. When the polymer materials are polished with disperse system DS1, the total cross section for the scattering of wear nanoparticles on sludge nanoparticles exponentially decreases with an increase in the quality factor of a resonator. When disperse system DS2 is used, the total cross section for the scattering of wear nanoparticles of sludge nanoparticles is independent of the quality factor of a resonator. It has been shown that the formation of a deposit from polishing powder wear particles on the surface of a part is most probable at maximum total scattering cross sections. It has been experimentally established that a deposit in the form of a film with a thickness of 1.5 and 0.3 µm completely or partially coats the surface of a part when polystyrene or polyallyl diglycol carbonate is polished with disperse system DS2.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"45 6","pages":"451 - 459"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering of Polishing Powder Wear Nanoparticles on Sludge Nanoparticles during the Polishing of Polymer Optical Materials\",\"authors\":\"Yu. D. Filatov, V. I. Sidorko, S. V. Kovalev, A. Y. Boyarintsev, V. A. Kovalev, O. Y. Yurchyshyn\",\"doi\":\"10.3103/S1063457623060035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a result of studying the regularities of interaction between polishing powder wear and sludge nanoparticles during the polishing of polymer optical materials by disperse systems of micro- and nanopowders on the basis of <i>ab initio</i> calculations according to the quantum scattering theory, it has been established that polishing powder wear nanoparticles are elastically scattered on sludge nanoparticles exclusively at angles of 0° and 180° over the differential scattering cross section 10<sup>4</sup>–10<sup>5</sup> times larger than for other angles. It has been shown that the total cross section for the scattering of wear nanoparticles on sludge nanoparticles exponentially decreases with an increase in their average size and grows with increasing concentration. When the polymer materials are polished with disperse system DS1, the total cross section for the scattering of wear nanoparticles on sludge nanoparticles exponentially decreases with an increase in the quality factor of a resonator. When disperse system DS2 is used, the total cross section for the scattering of wear nanoparticles of sludge nanoparticles is independent of the quality factor of a resonator. It has been shown that the formation of a deposit from polishing powder wear particles on the surface of a part is most probable at maximum total scattering cross sections. It has been experimentally established that a deposit in the form of a film with a thickness of 1.5 and 0.3 µm completely or partially coats the surface of a part when polystyrene or polyallyl diglycol carbonate is polished with disperse system DS2.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"45 6\",\"pages\":\"451 - 459\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457623060035\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457623060035","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Scattering of Polishing Powder Wear Nanoparticles on Sludge Nanoparticles during the Polishing of Polymer Optical Materials
As a result of studying the regularities of interaction between polishing powder wear and sludge nanoparticles during the polishing of polymer optical materials by disperse systems of micro- and nanopowders on the basis of ab initio calculations according to the quantum scattering theory, it has been established that polishing powder wear nanoparticles are elastically scattered on sludge nanoparticles exclusively at angles of 0° and 180° over the differential scattering cross section 104–105 times larger than for other angles. It has been shown that the total cross section for the scattering of wear nanoparticles on sludge nanoparticles exponentially decreases with an increase in their average size and grows with increasing concentration. When the polymer materials are polished with disperse system DS1, the total cross section for the scattering of wear nanoparticles on sludge nanoparticles exponentially decreases with an increase in the quality factor of a resonator. When disperse system DS2 is used, the total cross section for the scattering of wear nanoparticles of sludge nanoparticles is independent of the quality factor of a resonator. It has been shown that the formation of a deposit from polishing powder wear particles on the surface of a part is most probable at maximum total scattering cross sections. It has been experimentally established that a deposit in the form of a film with a thickness of 1.5 and 0.3 µm completely or partially coats the surface of a part when polystyrene or polyallyl diglycol carbonate is polished with disperse system DS2.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.