{"title":"体内乙型肝炎病毒感染的动态变化与间隔延迟","authors":"Haonan Zhong, Kaifa Wang","doi":"10.1137/23m154546x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 205-235, March 2024. <br/> Abstract.In view of the molecular biological mechanism of the cytotoxic T lymphocytes proliferation induced by hepatitis B virus infection in vivo, a novel dynamical model with interval delay is proposed. The interval delay is determined by two delay parameters, namely delay center and delay radius. We derive the basic reproduction number [math] for the viral infection and obtain that the virus-free equilibrium (VFE) is globally asymptotically stable if [math]. When [math], besides VFE, the unique virus-present equilibrium (VPE) exists and the conditions of its asymptotical stability are obtained. Moreover, we study the Hopf bifurcations induced by the two delay parameters. Although there is no mitotic term in the target-cell dynamics, the results indicate that both these delay parameters can lead to periodic fluctuations at VPE, but only the smaller delay radius will destabilize the system, which is different from the classical discrete delay or distributed delay. Numerical simulations indicate that the proposed model can capture the profiles of the clinical data of two untreated chronic hepatitis B patients. The ability of interval delay to destabilize the system is between discrete delay and distributed delay, and the delay center plays the primary role. Pharmaceutical treatment can affect the stability of VPE and induce the fast-slow periodic phenomenon.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics on Hepatitis B Virus Infection In Vivo with Interval Delay\",\"authors\":\"Haonan Zhong, Kaifa Wang\",\"doi\":\"10.1137/23m154546x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 205-235, March 2024. <br/> Abstract.In view of the molecular biological mechanism of the cytotoxic T lymphocytes proliferation induced by hepatitis B virus infection in vivo, a novel dynamical model with interval delay is proposed. The interval delay is determined by two delay parameters, namely delay center and delay radius. We derive the basic reproduction number [math] for the viral infection and obtain that the virus-free equilibrium (VFE) is globally asymptotically stable if [math]. When [math], besides VFE, the unique virus-present equilibrium (VPE) exists and the conditions of its asymptotical stability are obtained. Moreover, we study the Hopf bifurcations induced by the two delay parameters. Although there is no mitotic term in the target-cell dynamics, the results indicate that both these delay parameters can lead to periodic fluctuations at VPE, but only the smaller delay radius will destabilize the system, which is different from the classical discrete delay or distributed delay. Numerical simulations indicate that the proposed model can capture the profiles of the clinical data of two untreated chronic hepatitis B patients. The ability of interval delay to destabilize the system is between discrete delay and distributed delay, and the delay center plays the primary role. Pharmaceutical treatment can affect the stability of VPE and induce the fast-slow periodic phenomenon.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m154546x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m154546x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamics on Hepatitis B Virus Infection In Vivo with Interval Delay
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 205-235, March 2024. Abstract.In view of the molecular biological mechanism of the cytotoxic T lymphocytes proliferation induced by hepatitis B virus infection in vivo, a novel dynamical model with interval delay is proposed. The interval delay is determined by two delay parameters, namely delay center and delay radius. We derive the basic reproduction number [math] for the viral infection and obtain that the virus-free equilibrium (VFE) is globally asymptotically stable if [math]. When [math], besides VFE, the unique virus-present equilibrium (VPE) exists and the conditions of its asymptotical stability are obtained. Moreover, we study the Hopf bifurcations induced by the two delay parameters. Although there is no mitotic term in the target-cell dynamics, the results indicate that both these delay parameters can lead to periodic fluctuations at VPE, but only the smaller delay radius will destabilize the system, which is different from the classical discrete delay or distributed delay. Numerical simulations indicate that the proposed model can capture the profiles of the clinical data of two untreated chronic hepatitis B patients. The ability of interval delay to destabilize the system is between discrete delay and distributed delay, and the delay center plays the primary role. Pharmaceutical treatment can affect the stability of VPE and induce the fast-slow periodic phenomenon.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.