加利福尼亚州圣巴巴拉的日落风实验 (SWEX):增进对沿海环境中下坡暴风的了解和可预测性

IF 6.9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Bulletin of the American Meteorological Society Pub Date : 2024-01-18 DOI:10.1175/bams-d-22-0171.1
Leila M. V. Carvalho, Gert-Jan Duine, Craig Clements, Stephan F. J. De Wekker, Harindra J. S. Fernando, David R. Fitzjarrald, Robert G. Fovell, Charles Jones, Zhien Wang, Loren White, Anthony Bucholtz, Matthew J. Brewer, William Brown, Matt Burkhart, Edward Creegan, Min Deng, Marian De Orla-Barille, David Emmitt, Steve Greco, Terry Hock, James Kasic, Kiera Malarkey, Griffin Modjeski, Steven Oncley, Alison Rockwell, Daisuke Seto, Callum Thompson, Holger Vӧmel
{"title":"加利福尼亚州圣巴巴拉的日落风实验 (SWEX):增进对沿海环境中下坡暴风的了解和可预测性","authors":"Leila M. V. Carvalho, Gert-Jan Duine, Craig Clements, Stephan F. J. De Wekker, Harindra J. S. Fernando, David R. Fitzjarrald, Robert G. Fovell, Charles Jones, Zhien Wang, Loren White, Anthony Bucholtz, Matthew J. Brewer, William Brown, Matt Burkhart, Edward Creegan, Min Deng, Marian De Orla-Barille, David Emmitt, Steve Greco, Terry Hock, James Kasic, Kiera Malarkey, Griffin Modjeski, Steven Oncley, Alison Rockwell, Daisuke Seto, Callum Thompson, Holger Vӧmel","doi":"10.1175/bams-d-22-0171.1","DOIUrl":null,"url":null,"abstract":"Abstract Coastal Santa Barbara is among the most exposed communities to wildfire hazards in southern California. Downslope, dry and gusty windstorms are frequently observed on the south-facing slopes of the Santa Ynez Mountains that separates the Pacific Ocean from the Santa Ynez Valley. These winds, known as “Sundowners”, peak after Sunset and are strong throughout the night and early morning. The Sundowner Winds Experiment (SWEX) was a field campaign funded by the National Science Foundation that took place in Santa Barbara, CA, between 1 April and 15 May 2022. It was a collaborative effort of ten institutions to advance understanding and predictability of Sundowners, while providing rich data sets for developing new theories of downslope windstorms in coastal environments with similar geographic and climatic characteristics. Sundowner spatiotemporal characteristics are controlled by complex interactions among atmospheric processes occurring upstream (Santa Ynez Valley), and downstream due to the influence of a cool and stable marine boundary layer. SWEX was designed to enhance spatial measurements to resolve local circulations and vertical structure from the surface to the mid-troposphere, and from the Santa Barbara Channel to the Santa Ynez Valley. This article discusses how SWEX brought cutting-edge science and the strengths of multiple ground-based and mobile instrument platforms to bear on this important problem. Among them are flux towers, mobile and stationary lidars, wind profilers, ceilometers, radiosondes, and an aircraft equipped with three lidars and a dropsonde system. The unique features observed during SWEX using this network of sophisticated instruments are discussed here.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Sundowner Winds Experiment (SWEX) in Santa Barbara, CA: Advancing Understanding and Predictability of Downslope Windstorms in Coastal Environments\",\"authors\":\"Leila M. V. Carvalho, Gert-Jan Duine, Craig Clements, Stephan F. J. De Wekker, Harindra J. S. Fernando, David R. Fitzjarrald, Robert G. Fovell, Charles Jones, Zhien Wang, Loren White, Anthony Bucholtz, Matthew J. Brewer, William Brown, Matt Burkhart, Edward Creegan, Min Deng, Marian De Orla-Barille, David Emmitt, Steve Greco, Terry Hock, James Kasic, Kiera Malarkey, Griffin Modjeski, Steven Oncley, Alison Rockwell, Daisuke Seto, Callum Thompson, Holger Vӧmel\",\"doi\":\"10.1175/bams-d-22-0171.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Coastal Santa Barbara is among the most exposed communities to wildfire hazards in southern California. Downslope, dry and gusty windstorms are frequently observed on the south-facing slopes of the Santa Ynez Mountains that separates the Pacific Ocean from the Santa Ynez Valley. These winds, known as “Sundowners”, peak after Sunset and are strong throughout the night and early morning. The Sundowner Winds Experiment (SWEX) was a field campaign funded by the National Science Foundation that took place in Santa Barbara, CA, between 1 April and 15 May 2022. It was a collaborative effort of ten institutions to advance understanding and predictability of Sundowners, while providing rich data sets for developing new theories of downslope windstorms in coastal environments with similar geographic and climatic characteristics. Sundowner spatiotemporal characteristics are controlled by complex interactions among atmospheric processes occurring upstream (Santa Ynez Valley), and downstream due to the influence of a cool and stable marine boundary layer. SWEX was designed to enhance spatial measurements to resolve local circulations and vertical structure from the surface to the mid-troposphere, and from the Santa Barbara Channel to the Santa Ynez Valley. This article discusses how SWEX brought cutting-edge science and the strengths of multiple ground-based and mobile instrument platforms to bear on this important problem. Among them are flux towers, mobile and stationary lidars, wind profilers, ceilometers, radiosondes, and an aircraft equipped with three lidars and a dropsonde system. The unique features observed during SWEX using this network of sophisticated instruments are discussed here.\",\"PeriodicalId\":9464,\"journal\":{\"name\":\"Bulletin of the American Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/bams-d-22-0171.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/bams-d-22-0171.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 圣塔芭芭拉沿海地区是南加州受野火危害最严重的社区之一。在将太平洋与圣塔伊内兹山谷隔开的圣塔伊内兹山脉朝南的山坡上,经常出现下坡、干燥和狂风。这些风被称为 "日落风",在日落之后达到顶峰,整个夜晚和清晨都很强劲。日落风实验(SWEX)是由美国国家科学基金会资助的一项实地活动,于 2022 年 4 月 1 日至 5 月 15 日在加利福尼亚州圣巴巴拉进行。它由十个机构合作完成,目的是加深对日落风的理解,提高日落风的可预测性,同时提供丰富的数据集,用于发展具有类似地理和气候特征的沿海环境中的下坡暴风的新理论。日落风的时空特征受上游(圣塔耶内斯山谷)大气过程之间复杂的相互作用的控制,而下游则受冷凉和稳定的海洋边界层的影响。SWEX 的设计目的是加强空间测量,以解析从地表到对流层中层以及从圣巴巴拉海峡到圣塔-伊内兹山谷的局部环流和垂直结构。本文讨论了 SWEX 如何将尖端科学和多种地面及移动仪器平台的优势用于解决这一重要问题。其中包括通量塔、移动式和固定式激光雷达、风廓线仪、天花板测量仪、无线电探空仪,以及一架配备了三个激光雷达和一个滴度计系统的飞机。本文讨论了利用这一精密仪器网络在 SWEX 期间观测到的独特特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Sundowner Winds Experiment (SWEX) in Santa Barbara, CA: Advancing Understanding and Predictability of Downslope Windstorms in Coastal Environments
Abstract Coastal Santa Barbara is among the most exposed communities to wildfire hazards in southern California. Downslope, dry and gusty windstorms are frequently observed on the south-facing slopes of the Santa Ynez Mountains that separates the Pacific Ocean from the Santa Ynez Valley. These winds, known as “Sundowners”, peak after Sunset and are strong throughout the night and early morning. The Sundowner Winds Experiment (SWEX) was a field campaign funded by the National Science Foundation that took place in Santa Barbara, CA, between 1 April and 15 May 2022. It was a collaborative effort of ten institutions to advance understanding and predictability of Sundowners, while providing rich data sets for developing new theories of downslope windstorms in coastal environments with similar geographic and climatic characteristics. Sundowner spatiotemporal characteristics are controlled by complex interactions among atmospheric processes occurring upstream (Santa Ynez Valley), and downstream due to the influence of a cool and stable marine boundary layer. SWEX was designed to enhance spatial measurements to resolve local circulations and vertical structure from the surface to the mid-troposphere, and from the Santa Barbara Channel to the Santa Ynez Valley. This article discusses how SWEX brought cutting-edge science and the strengths of multiple ground-based and mobile instrument platforms to bear on this important problem. Among them are flux towers, mobile and stationary lidars, wind profilers, ceilometers, radiosondes, and an aircraft equipped with three lidars and a dropsonde system. The unique features observed during SWEX using this network of sophisticated instruments are discussed here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
6.20%
发文量
231
审稿时长
6-12 weeks
期刊介绍: The Bulletin of the American Meteorological Society (BAMS) is the flagship magazine of AMS and publishes articles of interest and significance for the weather, water, and climate community as well as news, editorials, and reviews for AMS members.
期刊最新文献
Bridging the COSMOS: How the inclusion of and collaboration with Faith-based Understandings and Indigenous Knowledges can transform the Weather, Water, and Climate Enterprise Peering into cloud physics using ultra-fine resolution radar and lidar systems Advancing Marine Arctic Science Through Facilitating International Collaborations Quasi-linear convective systems and derechoes across Europe: climatology, accompanying hazards and societal impacts Lev Gutman – A Pioneer in Theoretical Mesoscale Meteorology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1