{"title":"图神经网络综述:概念、架构、技术、挑战、数据集、应用和未来方向","authors":"Bharti Khemani, Shruti Patil, Ketan Kotecha, Sudeep Tanwar","doi":"10.1186/s40537-023-00876-4","DOIUrl":null,"url":null,"abstract":"<p>Deep learning has seen significant growth recently and is now applied to a wide range of conventional use cases, including graphs. Graph data provides relational information between elements and is a standard data format for various machine learning and deep learning tasks. Models that can learn from such inputs are essential for working with graph data effectively. This paper identifies nodes and edges within specific applications, such as text, entities, and relations, to create graph structures. Different applications may require various graph neural network (GNN) models. GNNs facilitate the exchange of information between nodes in a graph, enabling them to understand dependencies within the nodes and edges. The paper delves into specific GNN models like graph convolution networks (GCNs), GraphSAGE, and graph attention networks (GATs), which are widely used in various applications today. It also discusses the message-passing mechanism employed by GNN models and examines the strengths and limitations of these models in different domains. Furthermore, the paper explores the diverse applications of GNNs, the datasets commonly used with them, and the Python libraries that support GNN models. It offers an extensive overview of the landscape of GNN research and its practical implementations.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"190 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions\",\"authors\":\"Bharti Khemani, Shruti Patil, Ketan Kotecha, Sudeep Tanwar\",\"doi\":\"10.1186/s40537-023-00876-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep learning has seen significant growth recently and is now applied to a wide range of conventional use cases, including graphs. Graph data provides relational information between elements and is a standard data format for various machine learning and deep learning tasks. Models that can learn from such inputs are essential for working with graph data effectively. This paper identifies nodes and edges within specific applications, such as text, entities, and relations, to create graph structures. Different applications may require various graph neural network (GNN) models. GNNs facilitate the exchange of information between nodes in a graph, enabling them to understand dependencies within the nodes and edges. The paper delves into specific GNN models like graph convolution networks (GCNs), GraphSAGE, and graph attention networks (GATs), which are widely used in various applications today. It also discusses the message-passing mechanism employed by GNN models and examines the strengths and limitations of these models in different domains. Furthermore, the paper explores the diverse applications of GNNs, the datasets commonly used with them, and the Python libraries that support GNN models. It offers an extensive overview of the landscape of GNN research and its practical implementations.</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-023-00876-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-023-00876-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions
Deep learning has seen significant growth recently and is now applied to a wide range of conventional use cases, including graphs. Graph data provides relational information between elements and is a standard data format for various machine learning and deep learning tasks. Models that can learn from such inputs are essential for working with graph data effectively. This paper identifies nodes and edges within specific applications, such as text, entities, and relations, to create graph structures. Different applications may require various graph neural network (GNN) models. GNNs facilitate the exchange of information between nodes in a graph, enabling them to understand dependencies within the nodes and edges. The paper delves into specific GNN models like graph convolution networks (GCNs), GraphSAGE, and graph attention networks (GATs), which are widely used in various applications today. It also discusses the message-passing mechanism employed by GNN models and examines the strengths and limitations of these models in different domains. Furthermore, the paper explores the diverse applications of GNNs, the datasets commonly used with them, and the Python libraries that support GNN models. It offers an extensive overview of the landscape of GNN research and its practical implementations.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.