{"title":"分析广义科尔莫戈罗夫-彼得罗夫斯基-皮斯库诺夫方程的时变网格法和物理信息神经网络的比较研究","authors":"Saad Sultan, Zhengce Zhang","doi":"10.1002/fld.5259","DOIUrl":null,"url":null,"abstract":"<p>The Kolmogorov–Petrovsky–Piskunov (KPP) partial differential equation (PDE) is solved in this article using the moving mesh finite difference technique (MMFDM) in conjunction with physics-informed neural networks (PINNs). We construct a time-dependent mesh to obtain approximate solutions for the KPP problem. The temporal derivative is discretized using a backward Euler, while the spatial derivatives are discretized using a central implicit difference scheme. Depending on the error measure, several moving mesh partial differential equations (MMPDEs) are employed along the arc-length and curvature mesh density functions (MDF). The proposed strategy has been suggested to yield remarkably precise and consistent results. To find the approximate solution, we additionally employ physics-informed neural networks (PINNs) to compare the outcomes of the adaptive moving mesh approach. It has been observed that solutions obtained using the moving mesh method (MMM) are sufficiently accurate, and the absolute error is also much lower than the PINNs.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"651-669"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative investigation of a time-dependent mesh method and physics-informed neural networks to analyze the generalized Kolmogorov–Petrovsky–Piskunov equation\",\"authors\":\"Saad Sultan, Zhengce Zhang\",\"doi\":\"10.1002/fld.5259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Kolmogorov–Petrovsky–Piskunov (KPP) partial differential equation (PDE) is solved in this article using the moving mesh finite difference technique (MMFDM) in conjunction with physics-informed neural networks (PINNs). We construct a time-dependent mesh to obtain approximate solutions for the KPP problem. The temporal derivative is discretized using a backward Euler, while the spatial derivatives are discretized using a central implicit difference scheme. Depending on the error measure, several moving mesh partial differential equations (MMPDEs) are employed along the arc-length and curvature mesh density functions (MDF). The proposed strategy has been suggested to yield remarkably precise and consistent results. To find the approximate solution, we additionally employ physics-informed neural networks (PINNs) to compare the outcomes of the adaptive moving mesh approach. It has been observed that solutions obtained using the moving mesh method (MMM) are sufficiently accurate, and the absolute error is also much lower than the PINNs.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 5\",\"pages\":\"651-669\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5259\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5259","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A comparative investigation of a time-dependent mesh method and physics-informed neural networks to analyze the generalized Kolmogorov–Petrovsky–Piskunov equation
The Kolmogorov–Petrovsky–Piskunov (KPP) partial differential equation (PDE) is solved in this article using the moving mesh finite difference technique (MMFDM) in conjunction with physics-informed neural networks (PINNs). We construct a time-dependent mesh to obtain approximate solutions for the KPP problem. The temporal derivative is discretized using a backward Euler, while the spatial derivatives are discretized using a central implicit difference scheme. Depending on the error measure, several moving mesh partial differential equations (MMPDEs) are employed along the arc-length and curvature mesh density functions (MDF). The proposed strategy has been suggested to yield remarkably precise and consistent results. To find the approximate solution, we additionally employ physics-informed neural networks (PINNs) to compare the outcomes of the adaptive moving mesh approach. It has been observed that solutions obtained using the moving mesh method (MMM) are sufficiently accurate, and the absolute error is also much lower than the PINNs.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.