{"title":"近底局部随机强迫的瑞利-贝纳德对流","authors":"Juraj Földes, Armen Shirikyan","doi":"10.1007/s10884-023-10336-5","DOIUrl":null,"url":null,"abstract":"<p>We prove stochastic stability of the three-dimensional Rayleigh–Bénard convection in the infinite Prandtl number regime for any pair of temperatures maintained on the top and the bottom. Assuming that the non-degenerate random perturbation acts in a thin layer adjacent to the bottom of the domain, we prove that the law of the random flow periodic in the two infinite directions stabilises to a unique stationary measure, provided that there is at least one point accessible from any initial state. We also prove that the latter property is satisfied if the amplitude of the noise is sufficiently large.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rayleigh–Bénard Convection with Stochastic Forcing Localised Near the Bottom\",\"authors\":\"Juraj Földes, Armen Shirikyan\",\"doi\":\"10.1007/s10884-023-10336-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove stochastic stability of the three-dimensional Rayleigh–Bénard convection in the infinite Prandtl number regime for any pair of temperatures maintained on the top and the bottom. Assuming that the non-degenerate random perturbation acts in a thin layer adjacent to the bottom of the domain, we prove that the law of the random flow periodic in the two infinite directions stabilises to a unique stationary measure, provided that there is at least one point accessible from any initial state. We also prove that the latter property is satisfied if the amplitude of the noise is sufficiently large.\\n</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-023-10336-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-023-10336-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rayleigh–Bénard Convection with Stochastic Forcing Localised Near the Bottom
We prove stochastic stability of the three-dimensional Rayleigh–Bénard convection in the infinite Prandtl number regime for any pair of temperatures maintained on the top and the bottom. Assuming that the non-degenerate random perturbation acts in a thin layer adjacent to the bottom of the domain, we prove that the law of the random flow periodic in the two infinite directions stabilises to a unique stationary measure, provided that there is at least one point accessible from any initial state. We also prove that the latter property is satisfied if the amplitude of the noise is sufficiently large.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.