基于深度迁移学习网络的单张 X 射线图像股骨 2D-3D 重建技术

IF 5.6 4区 医学 Q1 ENGINEERING, BIOMEDICAL Irbm Pub Date : 2024-02-01 DOI:10.1016/j.irbm.2024.100822
Ho-Gun Ha , Jinhan Lee , Gu-Hee Jung , Jaesung Hong , HyunKi Lee
{"title":"基于深度迁移学习网络的单张 X 射线图像股骨 2D-3D 重建技术","authors":"Ho-Gun Ha ,&nbsp;Jinhan Lee ,&nbsp;Gu-Hee Jung ,&nbsp;Jaesung Hong ,&nbsp;HyunKi Lee","doi":"10.1016/j.irbm.2024.100822","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Constructing a 3D model from its 2D images, known as 2D-3D reconstruction, is a challenging task. Conventionally, a parametric 3D model such as a statistical shape model (SSM) is deformed by matching the shapes in its 2D images through a series of processes, including calibration, 2D-3D registration, and optimization for nonrigid deformation. To overcome this complicated procedure, a streamlined 2D-3D reconstruction using a single X-ray image is developed in this study.</p></div><div><h3>Methods</h3><p>We propose 2D-3D reconstruction of a femur by adopting a deep neural network, where the deformation parameters in the SSM determining the 3D shape of the femur are predicted from a single X-ray image using a deep transfer-learning network. For learning the network from distinct features representing the 3D shape information in the X-ray image, a specific proximal part of the femur from a unique X-ray pose that allows accurate prediction of the 3D femur shape is designated and used to train the network. Then, the corresponding proximal/distal 3D femur model is reconstructed from only the single X-ray image acquired at the designated position.</p></div><div><h3>Results</h3><p><span>Experiments were conducted using actual X-ray images of a femur phantom and X-ray images of a patient's femur derived from computed tomography to verify the proposed method. The average errors of the reconstructed 3D shape of the proximal and </span>distal femurs from the proposed method were 1.20 mm and 1.08 mm in terms of root mean squared point-to-surface distance, respectively.</p></div><div><h3>Conclusion</h3><p>The proposed method presents an innovative approach to simplifying the 2D-3D reconstruction using deep neural networks that exhibits performance compatible with the existing methodologies.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 1","pages":"Article 100822"},"PeriodicalIF":5.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D-3D Reconstruction of a Femur by Single X-Ray Image Based on Deep Transfer Learning Network\",\"authors\":\"Ho-Gun Ha ,&nbsp;Jinhan Lee ,&nbsp;Gu-Hee Jung ,&nbsp;Jaesung Hong ,&nbsp;HyunKi Lee\",\"doi\":\"10.1016/j.irbm.2024.100822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Constructing a 3D model from its 2D images, known as 2D-3D reconstruction, is a challenging task. Conventionally, a parametric 3D model such as a statistical shape model (SSM) is deformed by matching the shapes in its 2D images through a series of processes, including calibration, 2D-3D registration, and optimization for nonrigid deformation. To overcome this complicated procedure, a streamlined 2D-3D reconstruction using a single X-ray image is developed in this study.</p></div><div><h3>Methods</h3><p>We propose 2D-3D reconstruction of a femur by adopting a deep neural network, where the deformation parameters in the SSM determining the 3D shape of the femur are predicted from a single X-ray image using a deep transfer-learning network. For learning the network from distinct features representing the 3D shape information in the X-ray image, a specific proximal part of the femur from a unique X-ray pose that allows accurate prediction of the 3D femur shape is designated and used to train the network. Then, the corresponding proximal/distal 3D femur model is reconstructed from only the single X-ray image acquired at the designated position.</p></div><div><h3>Results</h3><p><span>Experiments were conducted using actual X-ray images of a femur phantom and X-ray images of a patient's femur derived from computed tomography to verify the proposed method. The average errors of the reconstructed 3D shape of the proximal and </span>distal femurs from the proposed method were 1.20 mm and 1.08 mm in terms of root mean squared point-to-surface distance, respectively.</p></div><div><h3>Conclusion</h3><p>The proposed method presents an innovative approach to simplifying the 2D-3D reconstruction using deep neural networks that exhibits performance compatible with the existing methodologies.</p></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":\"45 1\",\"pages\":\"Article 100822\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031824000034\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031824000034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目标从二维图像构建三维模型(称为二维三维重建)是一项具有挑战性的任务。传统上,统计形状模型(SSM)等参数化三维模型是通过校准、二维三维配准和非刚性变形优化等一系列过程匹配其二维图像中的形状进行变形的。为了克服这一复杂的过程,本研究开发了一种使用单张 X 射线图像的简化 2D-3D 重建方法。我们建议采用深度神经网络对股骨进行 2D-3D 重建,其中,决定股骨 3D 形状的 SSM 中的变形参数将使用深度迁移学习网络从单张 X 射线图像中进行预测。为了从 X 射线图像中代表三维形状信息的不同特征中学习网络,需要指定能够准确预测股骨三维形状的独特 X 射线姿势中的特定股骨近端部分,并将其用于训练网络。然后,仅从指定位置获取的单张 X 光图像中重建相应的股骨近端/远端三维模型。结果实验使用股骨模型的实际 X 光图像和从计算机断层扫描中获取的患者股骨的 X 光图像来验证所提出的方法。根据所提方法重建的股骨近端和远端三维形状的平均误差(点到面距离的均方根值)分别为 1.20 毫米和 1.08 毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2D-3D Reconstruction of a Femur by Single X-Ray Image Based on Deep Transfer Learning Network

Objective

Constructing a 3D model from its 2D images, known as 2D-3D reconstruction, is a challenging task. Conventionally, a parametric 3D model such as a statistical shape model (SSM) is deformed by matching the shapes in its 2D images through a series of processes, including calibration, 2D-3D registration, and optimization for nonrigid deformation. To overcome this complicated procedure, a streamlined 2D-3D reconstruction using a single X-ray image is developed in this study.

Methods

We propose 2D-3D reconstruction of a femur by adopting a deep neural network, where the deformation parameters in the SSM determining the 3D shape of the femur are predicted from a single X-ray image using a deep transfer-learning network. For learning the network from distinct features representing the 3D shape information in the X-ray image, a specific proximal part of the femur from a unique X-ray pose that allows accurate prediction of the 3D femur shape is designated and used to train the network. Then, the corresponding proximal/distal 3D femur model is reconstructed from only the single X-ray image acquired at the designated position.

Results

Experiments were conducted using actual X-ray images of a femur phantom and X-ray images of a patient's femur derived from computed tomography to verify the proposed method. The average errors of the reconstructed 3D shape of the proximal and distal femurs from the proposed method were 1.20 mm and 1.08 mm in terms of root mean squared point-to-surface distance, respectively.

Conclusion

The proposed method presents an innovative approach to simplifying the 2D-3D reconstruction using deep neural networks that exhibits performance compatible with the existing methodologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Irbm
Irbm ENGINEERING, BIOMEDICAL-
CiteScore
10.30
自引率
4.20%
发文量
81
审稿时长
57 days
期刊介绍: IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux). As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in: -Physiological and Biological Signal processing (EEG, MEG, ECG…)- Medical Image processing- Biomechanics- Biomaterials- Medical Physics- Biophysics- Physiological and Biological Sensors- Information technologies in healthcare- Disability research- Computational physiology- …
期刊最新文献
Editorial Board Contents Potential of Near-Infrared Optical Techniques for Non-invasive Blood Glucose Measurement: A Pilot Study Corrigendum to “Automatic Detection of Severely and Mildly Infected COVID-19 Patients with Supervised Machine Learning Models” [IRBM (2023) 100725] Comprehensive Review of Feature Extraction Techniques for sEMG Signal Classification: From Handcrafted Features to Deep Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1