利用机器学习方法提高北极地区的 SMAP 海洋表面盐度

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY Moscow University Physics Bulletin Pub Date : 2024-01-17 DOI:10.3103/S0027134923070299
A. S. Savin, M. A. Krinitskiy, A. A. Osadchiev
{"title":"利用机器学习方法提高北极地区的 SMAP 海洋表面盐度","authors":"A. S. Savin,&nbsp;M. A. Krinitskiy,&nbsp;A. A. Osadchiev","doi":"10.3103/S0027134923070299","DOIUrl":null,"url":null,"abstract":"<p>Sea surface salinity (SSS) is a key physicochemical characteristic of the ocean that plays a significant role in describing the climate. Routine SSS retrieval algorithms exploiting remote sensing data have been developed and validated with high precision for typical regions of the World Ocean. Their effectiveness is worse in the Arctic though. To address this limitation, in this study, we employ machine learning (ML) techniques to enhance the quality of standard algorithms. We evaluate a few ML models, ranging from classical methods that process vector features, provided by standard Soil Moisture Active Passive (SMAP) satellite salinity algorithms, to deep artificial neural networks that combine vector features with two-dimensional fields extracted from the ERA5 reanalysis. We validate these models using in situ the data collected by the Shirshov Institute of Oceanology RAS during the expeditions to the Barents, Kara, Laptev, and East Siberian seas from 2015 to 2021. The results of the study indicate that the SMAP sea surface salinity standard product is improved in these regions. The ML models developed in this study make it possible to further study the Arctic region using enhanced sea surface salinity maps.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"78 1 supplement","pages":"S210 - S216"},"PeriodicalIF":0.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMAP Sea Surface Salinity Improvement in the Arctic Region Using Machine Learning Approaches\",\"authors\":\"A. S. Savin,&nbsp;M. A. Krinitskiy,&nbsp;A. A. Osadchiev\",\"doi\":\"10.3103/S0027134923070299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sea surface salinity (SSS) is a key physicochemical characteristic of the ocean that plays a significant role in describing the climate. Routine SSS retrieval algorithms exploiting remote sensing data have been developed and validated with high precision for typical regions of the World Ocean. Their effectiveness is worse in the Arctic though. To address this limitation, in this study, we employ machine learning (ML) techniques to enhance the quality of standard algorithms. We evaluate a few ML models, ranging from classical methods that process vector features, provided by standard Soil Moisture Active Passive (SMAP) satellite salinity algorithms, to deep artificial neural networks that combine vector features with two-dimensional fields extracted from the ERA5 reanalysis. We validate these models using in situ the data collected by the Shirshov Institute of Oceanology RAS during the expeditions to the Barents, Kara, Laptev, and East Siberian seas from 2015 to 2021. The results of the study indicate that the SMAP sea surface salinity standard product is improved in these regions. The ML models developed in this study make it possible to further study the Arctic region using enhanced sea surface salinity maps.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"78 1 supplement\",\"pages\":\"S210 - S216\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027134923070299\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134923070299","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要海洋表面盐度(SSS)是海洋的一个关键物理化学特征,在描述气候方面发挥着重要作用。利用遥感数据开发的常规 SSS 检索算法已在世界海洋典型区域得到高精度验证。但它们在北极地区的效果较差。为了解决这一局限性,我们在本研究中采用了机器学习(ML)技术来提高标准算法的质量。我们对一些 ML 模型进行了评估,包括处理由标准土壤水分主动被动(SMAP)卫星盐度算法提供的矢量特征的经典方法,以及将矢量特征与从ERA5 再分析中提取的二维场相结合的深度人工神经网络。我们利用俄罗斯科学院希尔绍夫海洋研究所在 2015 至 2021 年期间对巴伦支海、喀拉海、拉普捷夫海和东西伯利亚海进行考察时收集的现场数据对这些模型进行了验证。研究结果表明,SMAP 海洋表面盐度标准产品在这些地区得到了改进。本研究开发的 ML 模型使得利用增强型海面盐度图进一步研究北极地区成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMAP Sea Surface Salinity Improvement in the Arctic Region Using Machine Learning Approaches

Sea surface salinity (SSS) is a key physicochemical characteristic of the ocean that plays a significant role in describing the climate. Routine SSS retrieval algorithms exploiting remote sensing data have been developed and validated with high precision for typical regions of the World Ocean. Their effectiveness is worse in the Arctic though. To address this limitation, in this study, we employ machine learning (ML) techniques to enhance the quality of standard algorithms. We evaluate a few ML models, ranging from classical methods that process vector features, provided by standard Soil Moisture Active Passive (SMAP) satellite salinity algorithms, to deep artificial neural networks that combine vector features with two-dimensional fields extracted from the ERA5 reanalysis. We validate these models using in situ the data collected by the Shirshov Institute of Oceanology RAS during the expeditions to the Barents, Kara, Laptev, and East Siberian seas from 2015 to 2021. The results of the study indicate that the SMAP sea surface salinity standard product is improved in these regions. The ML models developed in this study make it possible to further study the Arctic region using enhanced sea surface salinity maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
期刊最新文献
Influence of Dimensional Quantization Effects on the Effective Mass of Major Charge Carriers in LED Heterostructures with In\({}_{\boldsymbol{x}}\)Ga\({}_{\boldsymbol{1-x}}\)N/GaN Multiple Quantum Wells Is the Cyclic Model of the Universe Possible in the Relativistic Theory of Gravitation? Experimental Assessment of Magnetic Resonance Imaging Distortion for Radiation Therapy Planning Orbital and Spin Parts of Angular Momentum Flux Density of Monochromatic Radiation in Nonabsorbing Media with Nonlocal Nonlinear Optical Response Temperature Changes in Luminescence of Mixed Complexes of Terbium and Samarium with Organic Ligands Based on 2,2\({}^{\boldsymbol{\prime}}\)-bipyridylcarboxamides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1