在神经网络解决介质物理特性可变的勘探地球物理逆问题中整合物理方法的研究

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY Moscow University Physics Bulletin Pub Date : 2024-01-17 DOI:10.3103/s0027134923070123
I. V. Isaev, I. E. Obornev, E. A. Obornev, E. A. Rodionov, M. I. Shimelevich, S. A. Dolenko
{"title":"在神经网络解决介质物理特性可变的勘探地球物理逆问题中整合物理方法的研究","authors":"I. V. Isaev, I. E. Obornev, E. A. Obornev, E. A. Rodionov, M. I. Shimelevich, S. A. Dolenko","doi":"10.3103/s0027134923070123","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Exploration geophysics requires solving specific inverse problems — reconstructing the spatial distribution of the medium properties in the thickness of the earth from the geophysical fields measured on its surface. We consider inverse problems of gravimetry, magnetometry, magnetotelluric sounding, and their integration, which means simultaneous use of various geophysical fields to reconstruct the desired distribution. Integration requires the determined parameters for all the methods to be the same. This may be achieved by the spatial statement of the problem, in which the task is to determine the boundaries of geophysical objects. In our previous studies, we considered the parameterization scheme where the inverse problem was to determine the lower boundary of several geological layers. Each layer was characterized by variable values of the depth of the lower boundary along the section, and by fixed values of density, magnetization, and resistivity, both for the layer and over the entire dataset. It was demonstrated that the integration of geophysical methods provides significantly better results than the use of each of the methods separately. The present study considers an extended and more realistic model of data—a parameterization scheme with variable properties of the medium, both along each layer and over the dataset.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Integration of Physical Methods in Neural Network Solution of the Inverse Problem of Exploration Geophysics with Variable Physical Properties of the Medium\",\"authors\":\"I. V. Isaev, I. E. Obornev, E. A. Obornev, E. A. Rodionov, M. I. Shimelevich, S. A. Dolenko\",\"doi\":\"10.3103/s0027134923070123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Exploration geophysics requires solving specific inverse problems — reconstructing the spatial distribution of the medium properties in the thickness of the earth from the geophysical fields measured on its surface. We consider inverse problems of gravimetry, magnetometry, magnetotelluric sounding, and their integration, which means simultaneous use of various geophysical fields to reconstruct the desired distribution. Integration requires the determined parameters for all the methods to be the same. This may be achieved by the spatial statement of the problem, in which the task is to determine the boundaries of geophysical objects. In our previous studies, we considered the parameterization scheme where the inverse problem was to determine the lower boundary of several geological layers. Each layer was characterized by variable values of the depth of the lower boundary along the section, and by fixed values of density, magnetization, and resistivity, both for the layer and over the entire dataset. It was demonstrated that the integration of geophysical methods provides significantly better results than the use of each of the methods separately. The present study considers an extended and more realistic model of data—a parameterization scheme with variable properties of the medium, both along each layer and over the dataset.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3103/s0027134923070123\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3103/s0027134923070123","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 勘探地球物理学需要解决特定的反问题--根据在地球表面测量到的地球物理场重建介质性质在地球厚度上的空间分布。我们考虑了重力测量、磁力测量、磁陀螺测深的逆问题及其整合,这意味着同时使用各种地球物理场来重建所需的分布。整合要求所有方法确定的参数相同。这可以通过问题的空间陈述来实现,其中的任务是确定地球物理对象的边界。在之前的研究中,我们考虑过参数化方案,即反演问题是确定几个地质层的下边界。每个层的特征是沿剖面下边界深度的可变值,以及该层和整个数据集的密度、磁化率和电阻率的固定值。结果表明,综合使用地球物理方法比单独使用每种方法的结果要好得多。本研究考虑了一个扩展的、更切合实际的数据模型--一种介质属性可变的参数化方案,既适用于每一层,也适用于整个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of the Integration of Physical Methods in Neural Network Solution of the Inverse Problem of Exploration Geophysics with Variable Physical Properties of the Medium

Abstract

Exploration geophysics requires solving specific inverse problems — reconstructing the spatial distribution of the medium properties in the thickness of the earth from the geophysical fields measured on its surface. We consider inverse problems of gravimetry, magnetometry, magnetotelluric sounding, and their integration, which means simultaneous use of various geophysical fields to reconstruct the desired distribution. Integration requires the determined parameters for all the methods to be the same. This may be achieved by the spatial statement of the problem, in which the task is to determine the boundaries of geophysical objects. In our previous studies, we considered the parameterization scheme where the inverse problem was to determine the lower boundary of several geological layers. Each layer was characterized by variable values of the depth of the lower boundary along the section, and by fixed values of density, magnetization, and resistivity, both for the layer and over the entire dataset. It was demonstrated that the integration of geophysical methods provides significantly better results than the use of each of the methods separately. The present study considers an extended and more realistic model of data—a parameterization scheme with variable properties of the medium, both along each layer and over the dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
期刊最新文献
Existence and Stability of a Stationary Solution in a Two-Dimensional Reaction-Diffusion System with Slow and Fast Components Machine Learning in the Problem of Extrapolating Variational Calculations in Nuclear Physics New Version of the Experimental Setup for the Measurement of $${{\gamma}}$$ -Quantum Emission Cross Sections in Nuclear Reactions Induced by 14.1 MeV Neutrons Calculation of Surface Binding Energy in Ni $${}_{\boldsymbol{x}}$$ Pd $${}_{\boldsymbol{y}}$$ Alloys Using Density Functional Theory Effect of Cluster Ion Bombardment on the Roughly Polished Surface of Single-Crystal Germanium Wafers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1