二氧化碳分子存储:单分子气体的状态

IF 3.7 Q2 CHEMISTRY, PHYSICAL ACS Physical Chemistry Au Pub Date : 2024-01-16 DOI:10.1021/acsphyschemau.3c00068
Yoshifumi Hashikawa*, Shumpei Sadai and Yasujiro Murata*, 
{"title":"二氧化碳分子存储:单分子气体的状态","authors":"Yoshifumi Hashikawa*,&nbsp;Shumpei Sadai and Yasujiro Murata*,&nbsp;","doi":"10.1021/acsphyschemau.3c00068","DOIUrl":null,"url":null,"abstract":"<p >CO<sub>2</sub> evolution is one of the urgent global issues; meanwhile, understanding of sorptive/dynamic behavior is crucial to create next-generation encapsulant materials with stable sorbent processes. Herein, we showcase molecular CO<sub>2</sub> storage constructed by a [60]fullerenol nanopocket. The CO<sub>2</sub> density reaches 2.401 g/cm<sup>3</sup> within the nanopore, showing strong intramolecular interactions, which induce nanoconfinement effects such as forbidden translation, restricted rotation, and perturbed vibration of CO<sub>2</sub>. We also disclosed an equation of state for a molecular CO<sub>2</sub> gas, revealing a very low pressure of 3.14 rPa (1 rPa = 10<sup>–27</sup> Pa) generated by the rotation/vibration at 300 K. Curiously enough, the CO<sub>2</sub> capture enabled to modulate an external property of the encapulant material itself, i.e., association of the [60]fullerenol via intercage hydrogen-bonding.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00068","citationCount":"0","resultStr":"{\"title\":\"Molecular CO2 Storage: State of a Single-Molecule Gas\",\"authors\":\"Yoshifumi Hashikawa*,&nbsp;Shumpei Sadai and Yasujiro Murata*,&nbsp;\",\"doi\":\"10.1021/acsphyschemau.3c00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >CO<sub>2</sub> evolution is one of the urgent global issues; meanwhile, understanding of sorptive/dynamic behavior is crucial to create next-generation encapsulant materials with stable sorbent processes. Herein, we showcase molecular CO<sub>2</sub> storage constructed by a [60]fullerenol nanopocket. The CO<sub>2</sub> density reaches 2.401 g/cm<sup>3</sup> within the nanopore, showing strong intramolecular interactions, which induce nanoconfinement effects such as forbidden translation, restricted rotation, and perturbed vibration of CO<sub>2</sub>. We also disclosed an equation of state for a molecular CO<sub>2</sub> gas, revealing a very low pressure of 3.14 rPa (1 rPa = 10<sup>–27</sup> Pa) generated by the rotation/vibration at 300 K. Curiously enough, the CO<sub>2</sub> capture enabled to modulate an external property of the encapulant material itself, i.e., association of the [60]fullerenol via intercage hydrogen-bonding.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳的演化是全球亟待解决的问题之一;同时,了解吸附/动力学行为对于创造具有稳定吸附过程的下一代封装材料至关重要。在此,我们展示了由[60]富勒烯醇纳米口袋构建的二氧化碳分子存储。二氧化碳在纳米孔内的密度达到 2.401 克/立方厘米,显示出很强的分子内相互作用,诱发了二氧化碳的禁止平移、限制旋转和扰动振动等纳米约束效应。我们还揭示了二氧化碳分子气体的状态方程,发现在 300 K 时旋转/振动产生的压力非常低,仅为 3.14 rPa(1 rPa = 10-27 Pa)。奇怪的是,二氧化碳捕获能够调节封装材料本身的外部属性,即通过笼间氢键与 [60] 富勒烯醇结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular CO2 Storage: State of a Single-Molecule Gas

CO2 evolution is one of the urgent global issues; meanwhile, understanding of sorptive/dynamic behavior is crucial to create next-generation encapsulant materials with stable sorbent processes. Herein, we showcase molecular CO2 storage constructed by a [60]fullerenol nanopocket. The CO2 density reaches 2.401 g/cm3 within the nanopore, showing strong intramolecular interactions, which induce nanoconfinement effects such as forbidden translation, restricted rotation, and perturbed vibration of CO2. We also disclosed an equation of state for a molecular CO2 gas, revealing a very low pressure of 3.14 rPa (1 rPa = 10–27 Pa) generated by the rotation/vibration at 300 K. Curiously enough, the CO2 capture enabled to modulate an external property of the encapulant material itself, i.e., association of the [60]fullerenol via intercage hydrogen-bonding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
期刊最新文献
Issue Publication Information Issue Editorial Masthead Roundabout Mechanism of Ion–Molecule Nucleophilic Substitution Reactions Ultrafast Spin Relaxation of Charge Carriers in Strongly Quantum Confined Methylammonium Lead Bromide Perovskite Magic-Sized Clusters Direct Detection of Bound Water in Hydrated Powders of Lysozyme by Differential Scanning Calorimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1