{"title":"利用占用时间适应性扰动高效逃离鞍点","authors":"Xin Guo , Jiequn Han , Mahan Tajrobehkar , Wenpin Tang","doi":"10.1016/j.jcmds.2024.100090","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by the super-diffusivity of self-repelling random walk, which has roots in statistical physics, this paper develops a new perturbation mechanism for optimization algorithms. In this mechanism, perturbations are adapted to the history of states via the notion of occupation time. After integrating this mechanism into the framework of perturbed gradient descent (PGD) and perturbed accelerated gradient descent (PAGD), two new algorithms are proposed: perturbed gradient descent adapted to occupation time (PGDOT) and its accelerated version (PAGDOT). PGDOT and PAGDOT are guaranteed to avoid getting stuck at non-degenerate saddle points, and are shown to converge to second-order stationary points at least as fast as PGD and PAGD, respectively. The theoretical analysis is corroborated by empirical studies in which the new algorithms consistently escape saddle points and outperform not only their counterparts, PGD and PAGD, but also other popular alternatives including stochastic gradient descent, Adam, and several state-of-the-art adaptive gradient methods.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"10 ","pages":"Article 100090"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415824000014/pdfft?md5=ef92b7ba4259b7a90a297dea99cfb00a&pid=1-s2.0-S2772415824000014-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Escaping saddle points efficiently with occupation-time-adapted perturbations\",\"authors\":\"Xin Guo , Jiequn Han , Mahan Tajrobehkar , Wenpin Tang\",\"doi\":\"10.1016/j.jcmds.2024.100090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by the super-diffusivity of self-repelling random walk, which has roots in statistical physics, this paper develops a new perturbation mechanism for optimization algorithms. In this mechanism, perturbations are adapted to the history of states via the notion of occupation time. After integrating this mechanism into the framework of perturbed gradient descent (PGD) and perturbed accelerated gradient descent (PAGD), two new algorithms are proposed: perturbed gradient descent adapted to occupation time (PGDOT) and its accelerated version (PAGDOT). PGDOT and PAGDOT are guaranteed to avoid getting stuck at non-degenerate saddle points, and are shown to converge to second-order stationary points at least as fast as PGD and PAGD, respectively. The theoretical analysis is corroborated by empirical studies in which the new algorithms consistently escape saddle points and outperform not only their counterparts, PGD and PAGD, but also other popular alternatives including stochastic gradient descent, Adam, and several state-of-the-art adaptive gradient methods.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"10 \",\"pages\":\"Article 100090\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415824000014/pdfft?md5=ef92b7ba4259b7a90a297dea99cfb00a&pid=1-s2.0-S2772415824000014-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415824000014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415824000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Escaping saddle points efficiently with occupation-time-adapted perturbations
Motivated by the super-diffusivity of self-repelling random walk, which has roots in statistical physics, this paper develops a new perturbation mechanism for optimization algorithms. In this mechanism, perturbations are adapted to the history of states via the notion of occupation time. After integrating this mechanism into the framework of perturbed gradient descent (PGD) and perturbed accelerated gradient descent (PAGD), two new algorithms are proposed: perturbed gradient descent adapted to occupation time (PGDOT) and its accelerated version (PAGDOT). PGDOT and PAGDOT are guaranteed to avoid getting stuck at non-degenerate saddle points, and are shown to converge to second-order stationary points at least as fast as PGD and PAGD, respectively. The theoretical analysis is corroborated by empirical studies in which the new algorithms consistently escape saddle points and outperform not only their counterparts, PGD and PAGD, but also other popular alternatives including stochastic gradient descent, Adam, and several state-of-the-art adaptive gradient methods.