{"title":"铼基二卤化物的极端面内热导率各向异性","authors":"Sina Tahbaz, Simone Pisana","doi":"10.1088/2515-7639/ad1d8b","DOIUrl":null,"url":null,"abstract":"Anisotropies in thermal conductivity are important for thermal management in a variety of applications, but also provide insight on the physics of nanoscale heat transfer. As materials are discovered with more extreme transport properties, it is interesting to ask what the limits are for how dissimilar the thermal conductivity can be along different directions in a crystal. Here we report on the thermal properties of rhenium-based transition metal dichalcogenides (TMDs), specifically rhenium disulfide (ReS<sub>2</sub>) and rhenium diselenide (ReSe<sub>2</sub>), highlighting their extraordinary thermal conductivity anisotropy. Along the basal crystal plane of ReS<sub>2</sub>, a maximum of <inline-formula>\n<tex-math><?CDATA $169\\pm11$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>169</mml:mn><mml:mo>±</mml:mo><mml:mn>11</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpmaterad1d8bieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> W mK<sup>−1</sup> is detected along the <italic toggle=\"yes\">b</italic>-axis and a minimum of <inline-formula>\n<tex-math><?CDATA $53\\pm4$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>53</mml:mn><mml:mo>±</mml:mo><mml:mn>4</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpmaterad1d8bieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> W mK<sup>−1</sup> perpendicular to it. For ReSe<sub>2</sub>, the maximum and minimum values of <inline-formula>\n<tex-math><?CDATA $116\\pm3$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>116</mml:mn><mml:mo>±</mml:mo><mml:mn>3</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpmaterad1d8bieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> W mK<sup>−1</sup> and <inline-formula>\n<tex-math><?CDATA $27\\pm1$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>27</mml:mn><mml:mo>±</mml:mo><mml:mn>1</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpmaterad1d8bieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> W mK<sup>−1</sup> are found to lie 60° and 150° away from the <italic toggle=\"yes\">b</italic>-axis, along the polarization direction of some of the principal Raman modes. These measurements demonstrate a remarkable anisotropy of 3.2 × and 4.3 × in the conductivity <italic toggle=\"yes\">within</italic> the crystal basal planes, respectively. The through-plane thermal conductivities, recorded at <inline-formula>\n<tex-math><?CDATA $0.66\\pm0.01$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>0.66</mml:mn><mml:mo>±</mml:mo><mml:mn>0.01</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpmaterad1d8bieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> W mK<sup>−1</sup> for ReS<sub>2</sub> and <inline-formula>\n<tex-math><?CDATA $2.31\\pm0.01$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>2.31</mml:mn><mml:mo>±</mml:mo><mml:mn>0.01</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpmaterad1d8bieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> W mK<sup>−1</sup> for ReSe<sub>2</sub>, highlight the impact of their layered structures, contributing to notably high in-plane to through-plane thermal conductivity ratios of 256 × for ReS<sub>2</sub> and 50 × for ReSe<sub>2</sub>. This research demonstrates the unique thermal properties that these comparatively underexplored TMDs have, shedding light on the need for further exploration into the intricate thermal behavior of such materials, while underscoring their potential significance for future applications in the fields of semiconductor devices and nanotechnology.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme in-plane thermal conductivity anisotropy in Rhenium-based dichalcogenides\",\"authors\":\"Sina Tahbaz, Simone Pisana\",\"doi\":\"10.1088/2515-7639/ad1d8b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anisotropies in thermal conductivity are important for thermal management in a variety of applications, but also provide insight on the physics of nanoscale heat transfer. As materials are discovered with more extreme transport properties, it is interesting to ask what the limits are for how dissimilar the thermal conductivity can be along different directions in a crystal. Here we report on the thermal properties of rhenium-based transition metal dichalcogenides (TMDs), specifically rhenium disulfide (ReS<sub>2</sub>) and rhenium diselenide (ReSe<sub>2</sub>), highlighting their extraordinary thermal conductivity anisotropy. Along the basal crystal plane of ReS<sub>2</sub>, a maximum of <inline-formula>\\n<tex-math><?CDATA $169\\\\pm11$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mn>169</mml:mn><mml:mo>±</mml:mo><mml:mn>11</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"jpmaterad1d8bieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> W mK<sup>−1</sup> is detected along the <italic toggle=\\\"yes\\\">b</italic>-axis and a minimum of <inline-formula>\\n<tex-math><?CDATA $53\\\\pm4$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mn>53</mml:mn><mml:mo>±</mml:mo><mml:mn>4</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"jpmaterad1d8bieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> W mK<sup>−1</sup> perpendicular to it. For ReSe<sub>2</sub>, the maximum and minimum values of <inline-formula>\\n<tex-math><?CDATA $116\\\\pm3$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mn>116</mml:mn><mml:mo>±</mml:mo><mml:mn>3</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"jpmaterad1d8bieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> W mK<sup>−1</sup> and <inline-formula>\\n<tex-math><?CDATA $27\\\\pm1$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mn>27</mml:mn><mml:mo>±</mml:mo><mml:mn>1</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"jpmaterad1d8bieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> W mK<sup>−1</sup> are found to lie 60° and 150° away from the <italic toggle=\\\"yes\\\">b</italic>-axis, along the polarization direction of some of the principal Raman modes. These measurements demonstrate a remarkable anisotropy of 3.2 × and 4.3 × in the conductivity <italic toggle=\\\"yes\\\">within</italic> the crystal basal planes, respectively. The through-plane thermal conductivities, recorded at <inline-formula>\\n<tex-math><?CDATA $0.66\\\\pm0.01$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mn>0.66</mml:mn><mml:mo>±</mml:mo><mml:mn>0.01</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"jpmaterad1d8bieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> W mK<sup>−1</sup> for ReS<sub>2</sub> and <inline-formula>\\n<tex-math><?CDATA $2.31\\\\pm0.01$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mn>2.31</mml:mn><mml:mo>±</mml:mo><mml:mn>0.01</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"jpmaterad1d8bieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> W mK<sup>−1</sup> for ReSe<sub>2</sub>, highlight the impact of their layered structures, contributing to notably high in-plane to through-plane thermal conductivity ratios of 256 × for ReS<sub>2</sub> and 50 × for ReSe<sub>2</sub>. This research demonstrates the unique thermal properties that these comparatively underexplored TMDs have, shedding light on the need for further exploration into the intricate thermal behavior of such materials, while underscoring their potential significance for future applications in the fields of semiconductor devices and nanotechnology.\",\"PeriodicalId\":501825,\"journal\":{\"name\":\"Journal of Physics: Materials\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/ad1d8b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7639/ad1d8b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
热导率的各向异性对于各种应用中的热管理非常重要,同时也为纳米级传热物理学提供了深入见解。随着具有更极端传输特性的材料不断被发现,人们不禁要问,晶体中不同方向的热导率差异极限有多大。在此,我们报告了铼基过渡金属二卤化物(TMDs)的热特性,特别是二硫化铼(ReS2)和二硒化铼(ReSe2),突出了它们非凡的热传导各向异性。沿着 ReS2 的基底晶面,检测到沿 b 轴的最大值为 169±11 W mK-1,而垂直于 b 轴的最小值为 53±4 W mK-1。对于 ReSe2,沿着一些主要拉曼模式的偏振方向,发现最大值 116±3 W mK-1 和最小值 27±1 W mK-1 分别位于与 b 轴成 60° 和 150° 的位置。这些测量结果表明,晶体基底面内的电导率具有显著的各向异性,分别为 3.2 × 和 4.3 ×。ReS2 和 ReSe2 的通面热导率分别为 0.66±0.01 W mK-1 和 2.31±0.01 W mK-1,这凸显了它们的层状结构的影响,使得它们的面内热导率与通面热导率之比分别高达 256 × 和 50 ×。这项研究展示了这些尚未被充分探索的 TMDs 所具有的独特热特性,揭示了进一步探索此类材料复杂热行为的必要性,同时强调了它们对半导体器件和纳米技术领域未来应用的潜在意义。
Extreme in-plane thermal conductivity anisotropy in Rhenium-based dichalcogenides
Anisotropies in thermal conductivity are important for thermal management in a variety of applications, but also provide insight on the physics of nanoscale heat transfer. As materials are discovered with more extreme transport properties, it is interesting to ask what the limits are for how dissimilar the thermal conductivity can be along different directions in a crystal. Here we report on the thermal properties of rhenium-based transition metal dichalcogenides (TMDs), specifically rhenium disulfide (ReS2) and rhenium diselenide (ReSe2), highlighting their extraordinary thermal conductivity anisotropy. Along the basal crystal plane of ReS2, a maximum of 169±11 W mK−1 is detected along the b-axis and a minimum of 53±4 W mK−1 perpendicular to it. For ReSe2, the maximum and minimum values of 116±3 W mK−1 and 27±1 W mK−1 are found to lie 60° and 150° away from the b-axis, along the polarization direction of some of the principal Raman modes. These measurements demonstrate a remarkable anisotropy of 3.2 × and 4.3 × in the conductivity within the crystal basal planes, respectively. The through-plane thermal conductivities, recorded at 0.66±0.01 W mK−1 for ReS2 and 2.31±0.01 W mK−1 for ReSe2, highlight the impact of their layered structures, contributing to notably high in-plane to through-plane thermal conductivity ratios of 256 × for ReS2 and 50 × for ReSe2. This research demonstrates the unique thermal properties that these comparatively underexplored TMDs have, shedding light on the need for further exploration into the intricate thermal behavior of such materials, while underscoring their potential significance for future applications in the fields of semiconductor devices and nanotechnology.