Francesco Carli, Pietro Foini, Nicolò Gozzi, Nicola Perra, Rossano Schifanella
{"title":"利用图形上的深度表征学习为团队绩效建模","authors":"Francesco Carli, Pietro Foini, Nicolò Gozzi, Nicola Perra, Rossano Schifanella","doi":"10.1140/epjds/s13688-023-00442-1","DOIUrl":null,"url":null,"abstract":"<p>Most human activities require collaborations within and across formal or informal teams. Our understanding of how the collaborative efforts spent by teams relate to their performance is still a matter of debate. Teamwork results in a highly interconnected ecosystem of potentially overlapping components where tasks are performed in interaction with team members and across other teams. To tackle this problem, we propose a graph neural network model to predict a team’s performance while identifying the drivers determining such outcome. In particular, the model is based on three architectural channels: topological, centrality, and contextual, which capture different factors potentially shaping teams’ success. We endow the model with two attention mechanisms to boost model performance and allow interpretability. A first mechanism allows pinpointing key members inside the team. A second mechanism allows us to quantify the contributions of the three driver effects in determining the outcome performance. We test model performance on various domains, outperforming most classical and neural baselines. Moreover, we include synthetic datasets designed to validate how the model disentangles the intended properties on which our model vastly outperforms baselines.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"29 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling teams performance using deep representational learning on graphs\",\"authors\":\"Francesco Carli, Pietro Foini, Nicolò Gozzi, Nicola Perra, Rossano Schifanella\",\"doi\":\"10.1140/epjds/s13688-023-00442-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most human activities require collaborations within and across formal or informal teams. Our understanding of how the collaborative efforts spent by teams relate to their performance is still a matter of debate. Teamwork results in a highly interconnected ecosystem of potentially overlapping components where tasks are performed in interaction with team members and across other teams. To tackle this problem, we propose a graph neural network model to predict a team’s performance while identifying the drivers determining such outcome. In particular, the model is based on three architectural channels: topological, centrality, and contextual, which capture different factors potentially shaping teams’ success. We endow the model with two attention mechanisms to boost model performance and allow interpretability. A first mechanism allows pinpointing key members inside the team. A second mechanism allows us to quantify the contributions of the three driver effects in determining the outcome performance. We test model performance on various domains, outperforming most classical and neural baselines. Moreover, we include synthetic datasets designed to validate how the model disentangles the intended properties on which our model vastly outperforms baselines.</p>\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-023-00442-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-023-00442-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Modeling teams performance using deep representational learning on graphs
Most human activities require collaborations within and across formal or informal teams. Our understanding of how the collaborative efforts spent by teams relate to their performance is still a matter of debate. Teamwork results in a highly interconnected ecosystem of potentially overlapping components where tasks are performed in interaction with team members and across other teams. To tackle this problem, we propose a graph neural network model to predict a team’s performance while identifying the drivers determining such outcome. In particular, the model is based on three architectural channels: topological, centrality, and contextual, which capture different factors potentially shaping teams’ success. We endow the model with two attention mechanisms to boost model performance and allow interpretability. A first mechanism allows pinpointing key members inside the team. A second mechanism allows us to quantify the contributions of the three driver effects in determining the outcome performance. We test model performance on various domains, outperforming most classical and neural baselines. Moreover, we include synthetic datasets designed to validate how the model disentangles the intended properties on which our model vastly outperforms baselines.
期刊介绍:
EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.