{"title":"云连续边缘三维激光雷达目标探测方法","authors":"Xuemei Li, Xuelian Liu, Da Xie, Chong Chen","doi":"10.1007/s10723-023-09736-0","DOIUrl":null,"url":null,"abstract":"<p>In the internet of things, machine learning at the edge of cloud continuum is developing rapidly, providing more convenient services for design developers. The paper proposes a lidar target detection method based on scene density-awareness network for cloud continuum. The density-awareness network architecture is designed, and the context column feature network is proposed. The BEV density attention feature network is designed by cascading the density feature map with the spatial attention mechanism, and then connected with the BEV column feature network to generate the ablation BEV map. Multi-head detector is designed to regress the object center point, scale size and direction, and loss function is used for active supervision. The experiment is conducted on Alibaba Cloud services. On the validation dataset of KITTI, the 3D objects and BEV objects are detected and evaluated for three types of objects. The results show that most of the AP values of the density-awareness model proposed in this paper are higher than other methods, and the detection time is 0.09 s, which can meet the requirements of high accuracy and real-time of vehicle-borne lidar target detection.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"112 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Lidar Target Detection Method at the Edge for the Cloud Continuum\",\"authors\":\"Xuemei Li, Xuelian Liu, Da Xie, Chong Chen\",\"doi\":\"10.1007/s10723-023-09736-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the internet of things, machine learning at the edge of cloud continuum is developing rapidly, providing more convenient services for design developers. The paper proposes a lidar target detection method based on scene density-awareness network for cloud continuum. The density-awareness network architecture is designed, and the context column feature network is proposed. The BEV density attention feature network is designed by cascading the density feature map with the spatial attention mechanism, and then connected with the BEV column feature network to generate the ablation BEV map. Multi-head detector is designed to regress the object center point, scale size and direction, and loss function is used for active supervision. The experiment is conducted on Alibaba Cloud services. On the validation dataset of KITTI, the 3D objects and BEV objects are detected and evaluated for three types of objects. The results show that most of the AP values of the density-awareness model proposed in this paper are higher than other methods, and the detection time is 0.09 s, which can meet the requirements of high accuracy and real-time of vehicle-borne lidar target detection.</p>\",\"PeriodicalId\":54817,\"journal\":{\"name\":\"Journal of Grid Computing\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grid Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-023-09736-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09736-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
3D Lidar Target Detection Method at the Edge for the Cloud Continuum
In the internet of things, machine learning at the edge of cloud continuum is developing rapidly, providing more convenient services for design developers. The paper proposes a lidar target detection method based on scene density-awareness network for cloud continuum. The density-awareness network architecture is designed, and the context column feature network is proposed. The BEV density attention feature network is designed by cascading the density feature map with the spatial attention mechanism, and then connected with the BEV column feature network to generate the ablation BEV map. Multi-head detector is designed to regress the object center point, scale size and direction, and loss function is used for active supervision. The experiment is conducted on Alibaba Cloud services. On the validation dataset of KITTI, the 3D objects and BEV objects are detected and evaluated for three types of objects. The results show that most of the AP values of the density-awareness model proposed in this paper are higher than other methods, and the detection time is 0.09 s, which can meet the requirements of high accuracy and real-time of vehicle-borne lidar target detection.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.