Charles A. Cardot, Joshua J. Kas, Jared E. Abramson, John J. Rehr, Gerald T. Seidler
{"title":"基于万尼尔多重配体场理论的核到核 X 射线发射光谱","authors":"Charles A. Cardot, Joshua J. Kas, Jared E. Abramson, John J. Rehr, Gerald T. Seidler","doi":"10.1016/j.elspec.2024.147419","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Recent advances using Density Functional Theory (DFT) to augment Multiplet </span>Ligand Field Theory (MLFT) have led to ab-initio calculations of many formerly empirical parameters. This development makes MLFT more predictive instead of interpretive, thus improving its value for studies of highly correlated </span><span><math><mrow><mn>3</mn><mi>d</mi></mrow></math></span>, <span><math><mrow><mn>4</mn><mi>d</mi></mrow></math></span>, and <em>f</em><span>-electron systems. Synchrotron<span> time is always at a premium, and tools that provide predictive capabilities have clear value when it comes to planning studies. Here, we develop a DFT + MLFT based approach for core-to-core Kα x-ray emission spectra (XES) and evaluate its performance for a range of transition metal systems. We find good agreement between theory and experiment, as well as the ability to capture key spectral trends related to spin and oxidation state. We also discuss limitations of the model in the context of the remaining free parameters and suggest directions forward.</span></span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core-to-core X-ray emission spectra from Wannier based multiplet ligand field theory\",\"authors\":\"Charles A. Cardot, Joshua J. Kas, Jared E. Abramson, John J. Rehr, Gerald T. Seidler\",\"doi\":\"10.1016/j.elspec.2024.147419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Recent advances using Density Functional Theory (DFT) to augment Multiplet </span>Ligand Field Theory (MLFT) have led to ab-initio calculations of many formerly empirical parameters. This development makes MLFT more predictive instead of interpretive, thus improving its value for studies of highly correlated </span><span><math><mrow><mn>3</mn><mi>d</mi></mrow></math></span>, <span><math><mrow><mn>4</mn><mi>d</mi></mrow></math></span>, and <em>f</em><span>-electron systems. Synchrotron<span> time is always at a premium, and tools that provide predictive capabilities have clear value when it comes to planning studies. Here, we develop a DFT + MLFT based approach for core-to-core Kα x-ray emission spectra (XES) and evaluate its performance for a range of transition metal systems. We find good agreement between theory and experiment, as well as the ability to capture key spectral trends related to spin and oxidation state. We also discuss limitations of the model in the context of the remaining free parameters and suggest directions forward.</span></span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0368204824000021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204824000021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
最近,利用密度泛函理论(DFT)增强多配体场理论(MLFT)的研究取得了进展,从而可以对许多以前的经验参数进行非原位计算。这一发展使 MLFT 更具预测性而非解释性,从而提高了它在研究高度相关的 3d、4d 和 f 电子系统方面的价值。同步加速器的时间总是非常宝贵的,在规划研究时,提供预测能力的工具具有明显的价值。在此,我们开发了一种基于 DFT + MLFT 的核到核 Kα X 射线发射光谱 (XES) 方法,并对其在一系列过渡金属体系中的性能进行了评估。我们发现理论与实验之间存在良好的一致性,并且能够捕捉到与自旋和氧化态相关的关键光谱趋势。我们还结合剩余的自由参数讨论了该模型的局限性,并提出了前进的方向。
Core-to-core X-ray emission spectra from Wannier based multiplet ligand field theory
Recent advances using Density Functional Theory (DFT) to augment Multiplet Ligand Field Theory (MLFT) have led to ab-initio calculations of many formerly empirical parameters. This development makes MLFT more predictive instead of interpretive, thus improving its value for studies of highly correlated , , and f-electron systems. Synchrotron time is always at a premium, and tools that provide predictive capabilities have clear value when it comes to planning studies. Here, we develop a DFT + MLFT based approach for core-to-core Kα x-ray emission spectra (XES) and evaluate its performance for a range of transition metal systems. We find good agreement between theory and experiment, as well as the ability to capture key spectral trends related to spin and oxidation state. We also discuss limitations of the model in the context of the remaining free parameters and suggest directions forward.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.