壳聚糖/TPP 纳米粒子的制备、表征和抗癌活性评估

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Anti-cancer agents in medicinal chemistry Pub Date : 2024-01-01 DOI:10.2174/0118715206279731231129105221
Maral Mahboubi Kancha, Mohsen Mehrabi, Fatemeh Sadat Bitaraf, Hamid Vahedi, Morteza Alizadeh, Andreas Bernkop-Schnürch
{"title":"壳聚糖/TPP 纳米粒子的制备、表征和抗癌活性评估","authors":"Maral Mahboubi Kancha, Mohsen Mehrabi, Fatemeh Sadat Bitaraf, Hamid Vahedi, Morteza Alizadeh, Andreas Bernkop-Schnürch","doi":"10.2174/0118715206279731231129105221","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims and background: </strong><i>Echis carinatus</i> venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, <i>etc.</i>).</p><p><strong>Objective: </strong>Nanotechnology-based drug delivery systems are suitable for protecting <i>Echis carinatus</i> venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects.</p><p><strong>Methods: </strong>In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay.</p><p><strong>Results: </strong>The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with <i>Echis carinatus</i> venom had a significant rate of cytotoxicity against cancer cells.</p><p><strong>Conclusion: </strong>It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"533-543"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation, Characterization, and Anticancer Activity Assessment of Chitosan/TPP Nanoparticles Loaded with <i>Echis carinatus</i> Venom.\",\"authors\":\"Maral Mahboubi Kancha, Mohsen Mehrabi, Fatemeh Sadat Bitaraf, Hamid Vahedi, Morteza Alizadeh, Andreas Bernkop-Schnürch\",\"doi\":\"10.2174/0118715206279731231129105221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims and background: </strong><i>Echis carinatus</i> venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, <i>etc.</i>).</p><p><strong>Objective: </strong>Nanotechnology-based drug delivery systems are suitable for protecting <i>Echis carinatus</i> venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects.</p><p><strong>Methods: </strong>In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay.</p><p><strong>Results: </strong>The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with <i>Echis carinatus</i> venom had a significant rate of cytotoxicity against cancer cells.</p><p><strong>Conclusion: </strong>It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"533-543\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206279731231129105221\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206279731231129105221","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目的和背景:Echis carinatus 毒液是由这种蛇的特殊腺体自然产生的一种有毒物质。除具有各种毒性外,这种毒液还具有治疗作用,可用于治疗各种癌症(肝癌、乳腺癌等):基于纳米技术的给药系统适用于保护 Echis carinatus 毒液免受破坏和不必要的吸收。目的:基于纳米技术的给药系统适用于保护箭毒毒液免受破坏和不必要的吸收,它们可以控制毒液的转移和吸收,大大减少副作用:本研究采用离子凝胶法和乳液交联法制备壳聚糖纳米颗粒。计算了毒液在特定时间点的包封效率、负载能力和释放率。此外,还利用 MTT 试验确定了纳米颗粒的最佳配方和细胞毒性效果:结果:优化后的纳米颗粒配方可增加对各种癌细胞株的细胞死亡诱导。此外,壳聚糖纳米粒子负载的 Echis carinatus 毒液对癌细胞具有显著的细胞毒性:结论:建议将这种配方作为一种合适的候选药物,利用纳米技术药物传输系统对癌症治疗进行更广泛的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation, Characterization, and Anticancer Activity Assessment of Chitosan/TPP Nanoparticles Loaded with Echis carinatus Venom.

Aims and background: Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.).

Objective: Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects.

Methods: In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay.

Results: The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells.

Conclusion: It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anti-cancer agents in medicinal chemistry
Anti-cancer agents in medicinal chemistry ONCOLOGY-CHEMISTRY, MEDICINAL
CiteScore
5.10
自引率
3.60%
发文量
323
审稿时长
4-8 weeks
期刊介绍: Formerly: Current Medicinal Chemistry - Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents. Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication. Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.
期刊最新文献
Anti-Inflammatory and Anti-proliferative Role of Essential Oil of Leaves of Cleistocalyx operculatus (Roxb.) Merr. & Perry. Amide Functionalized Novel Pyrrolo-pyrimidine Derivative as Anticancer Agents: Synthesis, Characterization and Molecular Docking Studies. Composition and Biological Activity of Flavonoid-containing Fractions of an Extract from Gratiola officinalis L. Synthesis of Chromene-linked Bis-indole Derivatives as Selective Tumor-associated Carbonic Anhydrase IX Inhibitors. A Review of Anticancer Potential of Conferone, Diversin and Ferutinin; Which One is Stronger for Cancer Therapy?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1