通过计算探索 Cichorium intybus L. 植物化学物质对微粒体细胞色素 P450 3A1 酶的调节作用:对药物代谢的启示。

IF 1.7 4区 医学 Q3 PHARMACOLOGY & PHARMACY Biopharmaceutics & Drug Disposition Pub Date : 2024-01-20 DOI:10.1002/bdd.2380
Abhishek Pathak, Satya Pal Singh, Dev Bukhsh Singh, Pranav Anjaria, Apoorv Tiwari
{"title":"通过计算探索 Cichorium intybus L. 植物化学物质对微粒体细胞色素 P450 3A1 酶的调节作用:对药物代谢的启示。","authors":"Abhishek Pathak,&nbsp;Satya Pal Singh,&nbsp;Dev Bukhsh Singh,&nbsp;Pranav Anjaria,&nbsp;Apoorv Tiwari","doi":"10.1002/bdd.2380","DOIUrl":null,"url":null,"abstract":"<p>Drug metabolism plays a crucial role in drug fate, including therapeutic inactivation or activation, as well as the formation of toxic compounds. This underscores the importance of understanding drug metabolism in drug discovery and development. Considering the substantial costs associated with traditional drug development methods, computational approaches have emerged as valuable tools for predicting the metabolic fate of drug candidates. With this in mind, the present study aimed to investigate the potential mechanisms underlying the modulation of microsomal cytochrome P450 3A1 (CYP3A1) enzyme activity by various phytochemicals found in <i>Cichorium intybus</i> L., commonly known as chicory. To achieve this goal, several <i>in silico</i> methods, including molecular docking and molecular dynamics (MD) simulation, were employed to explore computationally the microsomal CYP3A1 enzyme. Schrodinger software was utilized for the molecular docking study, which involved the interaction analysis between CYP3A1 and 28 phytoconstituents of <i>Cichorium intybus</i>. Virtual screening of 28 compounds from chicory led to the identification of the top five ranked compounds. These compounds were evaluated for drug-likeness properties, pharmacokinetic profiles, and predicted binding affinities to CYP3A1. Caffeoylshikimic acid and cichoric acid emerged as promising candidates due to their favorable characteristics, including good oral bioavailability and high binding affinities to CYP3A1. Molecular dynamics simulations were conducted to assess the stability of caffeoylshikimic acid within the CYP3A1 binding pocket. The results demonstrated that caffeoylshikimic acid maintained stable interactions with the enzyme throughout the simulation, suggesting its potential as an effective modulator of CYP3A1 activity. The findings of this study have the potential to provide valuable insights into the complex molecular mechanisms by which <i>Cichorium intybus</i> L. acts on hepatocytes and modulates CYP3A1 enzyme expression or activity. By elucidating the impact of these phytochemicals on drug metabolism, this research contributes to our understanding of how chicory may interact with drugs and influence their efficacy and safety profiles.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":"45 1","pages":"15-29"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational exploration of microsomal cytochrome P450 3A1 enzyme modulation by phytochemicals of Cichorium intybus L.: Insights into drug metabolism\",\"authors\":\"Abhishek Pathak,&nbsp;Satya Pal Singh,&nbsp;Dev Bukhsh Singh,&nbsp;Pranav Anjaria,&nbsp;Apoorv Tiwari\",\"doi\":\"10.1002/bdd.2380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drug metabolism plays a crucial role in drug fate, including therapeutic inactivation or activation, as well as the formation of toxic compounds. This underscores the importance of understanding drug metabolism in drug discovery and development. Considering the substantial costs associated with traditional drug development methods, computational approaches have emerged as valuable tools for predicting the metabolic fate of drug candidates. With this in mind, the present study aimed to investigate the potential mechanisms underlying the modulation of microsomal cytochrome P450 3A1 (CYP3A1) enzyme activity by various phytochemicals found in <i>Cichorium intybus</i> L., commonly known as chicory. To achieve this goal, several <i>in silico</i> methods, including molecular docking and molecular dynamics (MD) simulation, were employed to explore computationally the microsomal CYP3A1 enzyme. Schrodinger software was utilized for the molecular docking study, which involved the interaction analysis between CYP3A1 and 28 phytoconstituents of <i>Cichorium intybus</i>. Virtual screening of 28 compounds from chicory led to the identification of the top five ranked compounds. These compounds were evaluated for drug-likeness properties, pharmacokinetic profiles, and predicted binding affinities to CYP3A1. Caffeoylshikimic acid and cichoric acid emerged as promising candidates due to their favorable characteristics, including good oral bioavailability and high binding affinities to CYP3A1. Molecular dynamics simulations were conducted to assess the stability of caffeoylshikimic acid within the CYP3A1 binding pocket. The results demonstrated that caffeoylshikimic acid maintained stable interactions with the enzyme throughout the simulation, suggesting its potential as an effective modulator of CYP3A1 activity. The findings of this study have the potential to provide valuable insights into the complex molecular mechanisms by which <i>Cichorium intybus</i> L. acts on hepatocytes and modulates CYP3A1 enzyme expression or activity. By elucidating the impact of these phytochemicals on drug metabolism, this research contributes to our understanding of how chicory may interact with drugs and influence their efficacy and safety profiles.</p>\",\"PeriodicalId\":8865,\"journal\":{\"name\":\"Biopharmaceutics & Drug Disposition\",\"volume\":\"45 1\",\"pages\":\"15-29\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopharmaceutics & Drug Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2380\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2380","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

药物代谢对药物的命运起着至关重要的作用,包括治疗失活或活化,以及有毒化合物的形成。这凸显了了解药物代谢对药物发现和开发的重要性。考虑到传统的药物开发方法成本高昂,计算方法已成为预测候选药物代谢命运的重要工具。有鉴于此,本研究旨在探讨菊苣(Cichorium intybus L.,俗称菊苣)中的多种植物化学物质调节微粒体细胞色素 P450 3A1 (CYP3A1)酶活性的潜在机制。为实现这一目标,研究人员采用了多种硅学方法,包括分子对接和分子动力学(MD)模拟,对微粒体 CYP3A1 酶进行了计算探索。分子对接研究使用了 Schrodinger 软件,其中涉及 CYP3A1 与 28 种菊苣植物成分之间的相互作用分析。通过对 28 种菊苣化合物的虚拟筛选,确定了排名前五位的化合物。对这些化合物的药物相似性、药代动力学特征以及与 CYP3A1 的预测结合亲和力进行了评估。咖啡酰莽草酸和莽草酸因其良好的特性(包括良好的口服生物利用度和与 CYP3A1 的高结合亲和力)而成为有希望的候选化合物。研究人员进行了分子动力学模拟,以评估咖啡酰莽草酸在 CYP3A1 结合袋中的稳定性。结果表明,咖啡酰莽草酸在整个模拟过程中都能与酶保持稳定的相互作用,这表明它有可能成为 CYP3A1 活性的有效调节剂。本研究的发现有可能为深入了解 Cichorium intybus L. 作用于肝细胞并调节 CYP3A1 酶表达或活性的复杂分子机制提供有价值的见解。通过阐明这些植物化学物质对药物代谢的影响,这项研究有助于我们了解菊苣如何与药物相互作用并影响其疗效和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational exploration of microsomal cytochrome P450 3A1 enzyme modulation by phytochemicals of Cichorium intybus L.: Insights into drug metabolism

Drug metabolism plays a crucial role in drug fate, including therapeutic inactivation or activation, as well as the formation of toxic compounds. This underscores the importance of understanding drug metabolism in drug discovery and development. Considering the substantial costs associated with traditional drug development methods, computational approaches have emerged as valuable tools for predicting the metabolic fate of drug candidates. With this in mind, the present study aimed to investigate the potential mechanisms underlying the modulation of microsomal cytochrome P450 3A1 (CYP3A1) enzyme activity by various phytochemicals found in Cichorium intybus L., commonly known as chicory. To achieve this goal, several in silico methods, including molecular docking and molecular dynamics (MD) simulation, were employed to explore computationally the microsomal CYP3A1 enzyme. Schrodinger software was utilized for the molecular docking study, which involved the interaction analysis between CYP3A1 and 28 phytoconstituents of Cichorium intybus. Virtual screening of 28 compounds from chicory led to the identification of the top five ranked compounds. These compounds were evaluated for drug-likeness properties, pharmacokinetic profiles, and predicted binding affinities to CYP3A1. Caffeoylshikimic acid and cichoric acid emerged as promising candidates due to their favorable characteristics, including good oral bioavailability and high binding affinities to CYP3A1. Molecular dynamics simulations were conducted to assess the stability of caffeoylshikimic acid within the CYP3A1 binding pocket. The results demonstrated that caffeoylshikimic acid maintained stable interactions with the enzyme throughout the simulation, suggesting its potential as an effective modulator of CYP3A1 activity. The findings of this study have the potential to provide valuable insights into the complex molecular mechanisms by which Cichorium intybus L. acts on hepatocytes and modulates CYP3A1 enzyme expression or activity. By elucidating the impact of these phytochemicals on drug metabolism, this research contributes to our understanding of how chicory may interact with drugs and influence their efficacy and safety profiles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
35
审稿时长
6-12 weeks
期刊介绍: Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes: - animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites, - in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man - studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition, - simulation and modeling in drug discovery and development - theoretical treatises - includes themed issues and reviews and exclude manuscripts on - bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation - analytical methods
期刊最新文献
In Vivo Animal Spices and Experimental Technique to Evaluate Sustained Release Granules. Issue Information Application of Physiologically Based Pharmacokinetic Model to Compare the Biodistribution of Liposomal Amphotericin B With Conventional Amphotericin B Deoxycholate in Humans Exploring the Potential of Nasal Drug Delivery for Brain Targeted Therapy: A Detailed Analysis A limited sampling model to estimate the area under the curve of mycophenolic acid in hematopoietic stem cell transplantation recipients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1