Hao Liu, Lei Guo, Lei Zhu, Yongqiang Jiang, Min Gao, Hongzhi Yin
{"title":"MCRPL:非重叠多对一跨域推荐的预训练、提示和微调范式","authors":"Hao Liu, Lei Guo, Lei Zhu, Yongqiang Jiang, Min Gao, Hongzhi Yin","doi":"10.1145/3641860","DOIUrl":null,"url":null,"abstract":"<p>Cross-domain Recommendation (CR) is the task that tends to improve the recommendations in the sparse target domain by leveraging the information from other rich domains. Existing methods of cross-domain recommendation mainly focus on overlapping scenarios by assuming users are totally or partially overlapped, which are taken as bridges to connect different domains. However, this assumption does not always hold since it is illegal to leak users’ identity information to other domains. Conducting Non-overlapping MCR (NMCR) is challenging since 1) The absence of overlapping information prevents us from directly aligning different domains, and this situation may get worse in the MCR scenario. 2) The distribution between source and target domains makes it difficult for us to learn common information across domains. To overcome the above challenges, we focus on NMCR, and devise MCRPL as our solution. To address Challenge 1, we first learn shared domain-agnostic and domain-dependent prompts, and pre-train them in the pre-training stage. To address Challenge 2, we further update the domain-dependent prompts with other parameters kept fixed to transfer the domain knowledge to the target domain. We conduct experiments on five real-world domains, and the results show the advance of our MCRPL method compared with several recent SOTA baselines. Moreover, Our source codes have been publicly released<sup>1</sup>.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"7 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MCRPL: A Pretrain, Prompt & Fine-tune Paradigm for Non-overlapping Many-to-one Cross-domain Recommendation\",\"authors\":\"Hao Liu, Lei Guo, Lei Zhu, Yongqiang Jiang, Min Gao, Hongzhi Yin\",\"doi\":\"10.1145/3641860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cross-domain Recommendation (CR) is the task that tends to improve the recommendations in the sparse target domain by leveraging the information from other rich domains. Existing methods of cross-domain recommendation mainly focus on overlapping scenarios by assuming users are totally or partially overlapped, which are taken as bridges to connect different domains. However, this assumption does not always hold since it is illegal to leak users’ identity information to other domains. Conducting Non-overlapping MCR (NMCR) is challenging since 1) The absence of overlapping information prevents us from directly aligning different domains, and this situation may get worse in the MCR scenario. 2) The distribution between source and target domains makes it difficult for us to learn common information across domains. To overcome the above challenges, we focus on NMCR, and devise MCRPL as our solution. To address Challenge 1, we first learn shared domain-agnostic and domain-dependent prompts, and pre-train them in the pre-training stage. To address Challenge 2, we further update the domain-dependent prompts with other parameters kept fixed to transfer the domain knowledge to the target domain. We conduct experiments on five real-world domains, and the results show the advance of our MCRPL method compared with several recent SOTA baselines. Moreover, Our source codes have been publicly released<sup>1</sup>.</p>\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3641860\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641860","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MCRPL: A Pretrain, Prompt & Fine-tune Paradigm for Non-overlapping Many-to-one Cross-domain Recommendation
Cross-domain Recommendation (CR) is the task that tends to improve the recommendations in the sparse target domain by leveraging the information from other rich domains. Existing methods of cross-domain recommendation mainly focus on overlapping scenarios by assuming users are totally or partially overlapped, which are taken as bridges to connect different domains. However, this assumption does not always hold since it is illegal to leak users’ identity information to other domains. Conducting Non-overlapping MCR (NMCR) is challenging since 1) The absence of overlapping information prevents us from directly aligning different domains, and this situation may get worse in the MCR scenario. 2) The distribution between source and target domains makes it difficult for us to learn common information across domains. To overcome the above challenges, we focus on NMCR, and devise MCRPL as our solution. To address Challenge 1, we first learn shared domain-agnostic and domain-dependent prompts, and pre-train them in the pre-training stage. To address Challenge 2, we further update the domain-dependent prompts with other parameters kept fixed to transfer the domain knowledge to the target domain. We conduct experiments on five real-world domains, and the results show the advance of our MCRPL method compared with several recent SOTA baselines. Moreover, Our source codes have been publicly released1.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.