在中性溶液中通过 Mn-Co(OH)2 调节 H* 物种以实现高效硝酸盐电还原。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-01-22 DOI:10.1002/anie.202400206
Shaozhen Liang, Xue Teng, Heng Xu, Prof. Lisong Chen, Prof. Jianlin Shi
{"title":"在中性溶液中通过 Mn-Co(OH)2 调节 H* 物种以实现高效硝酸盐电还原。","authors":"Shaozhen Liang,&nbsp;Xue Teng,&nbsp;Heng Xu,&nbsp;Prof. Lisong Chen,&nbsp;Prof. Jianlin Shi","doi":"10.1002/anie.202400206","DOIUrl":null,"url":null,"abstract":"<p>During the electrocatalytic NO<sub>3</sub><sup>−</sup> reduction reaction (NO<sub>3</sub><sup>−</sup>RR) under neutral condition, the activation of H<sub>2</sub>O to generate H* and the inhibition of inter-H* species binding, are critically important but remain challenging for suppressing the non-desirable hydrogen evolution reaction (HER). Here, a Mn-doped Co(OH)<sub>2</sub> (named as Mn-Co(OH)<sub>2</sub>) has been synthesized by <i>in situ</i> reconstruction in the electrolyte, which is able to dissociate H<sub>2</sub>O molecules but inhibits the binding of H* species between each other owing to the increased interatomic spacing by the Mn-doping. The Mn-Co(OH)<sub>2</sub> electrocatalyst offers a faradaic efficiency (FE) of as high as 98.9±1.7% at −0.6 V vs. the reversible hydrogen electrode (RHE) and an energy efficiency (EE) of 49.90±1.03% for NH<sub>3</sub> production by NO<sub>3</sub><sup>−</sup>RR, which are among the highest of the recently reported state-of-the-art catalysts in neutral electrolyte. Moreover, negligible degradation at −200 mA cm<sup>−2</sup> has been found for at least 500 h, which is the longest catalytic durations ever reported. This work paves a novel approach for the design and synthesis of efficient NO<sub>3</sub><sup>−</sup>RR electrocatalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H* Species Regulation by Mn-Co(OH)2 for Efficient Nitrate Electro-reduction in Neutral Solution\",\"authors\":\"Shaozhen Liang,&nbsp;Xue Teng,&nbsp;Heng Xu,&nbsp;Prof. Lisong Chen,&nbsp;Prof. Jianlin Shi\",\"doi\":\"10.1002/anie.202400206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During the electrocatalytic NO<sub>3</sub><sup>−</sup> reduction reaction (NO<sub>3</sub><sup>−</sup>RR) under neutral condition, the activation of H<sub>2</sub>O to generate H* and the inhibition of inter-H* species binding, are critically important but remain challenging for suppressing the non-desirable hydrogen evolution reaction (HER). Here, a Mn-doped Co(OH)<sub>2</sub> (named as Mn-Co(OH)<sub>2</sub>) has been synthesized by <i>in situ</i> reconstruction in the electrolyte, which is able to dissociate H<sub>2</sub>O molecules but inhibits the binding of H* species between each other owing to the increased interatomic spacing by the Mn-doping. The Mn-Co(OH)<sub>2</sub> electrocatalyst offers a faradaic efficiency (FE) of as high as 98.9±1.7% at −0.6 V vs. the reversible hydrogen electrode (RHE) and an energy efficiency (EE) of 49.90±1.03% for NH<sub>3</sub> production by NO<sub>3</sub><sup>−</sup>RR, which are among the highest of the recently reported state-of-the-art catalysts in neutral electrolyte. Moreover, negligible degradation at −200 mA cm<sup>−2</sup> has been found for at least 500 h, which is the longest catalytic durations ever reported. This work paves a novel approach for the design and synthesis of efficient NO<sub>3</sub><sup>−</sup>RR electrocatalysts.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202400206\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202400206","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在中性条件下的电催化 NO3- 还原反应(NO3-RR)中,激活 H2O 生成 H* 以及抑制 H* 物种间的结合是至关重要的,但对于抑制非理想的氢演化反应(HER)而言仍具有挑战性。本文通过在电解质中原位重构合成了掺锰的 Co(OH)2(命名为 Mn-Co(OH)2),它能够离解 H2O 分子,但由于掺锰增加了原子间距,因此抑制了 H* 物种之间的结合。与可逆氢电极(RHE)相比,Mn-Co(OH)2 电催化剂在 -0.6 V 电压下的法拉第效率(FE)高达 98.9 ± 1.7%,通过 NO3-RR 生产 NH3 的能效(EE)为 49.90 ± 1.03%,是最近报道的中性电解质中最先进催化剂中最高的。此外,在 -200 mA cm-2 的条件下,至少 500 小时的降解可以忽略不计,这是迄今为止所报道的最长催化持续时间。这项工作为设计和合成高效的 NO3-RR 电催化剂开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H* Species Regulation by Mn-Co(OH)2 for Efficient Nitrate Electro-reduction in Neutral Solution

During the electrocatalytic NO3 reduction reaction (NO3RR) under neutral condition, the activation of H2O to generate H* and the inhibition of inter-H* species binding, are critically important but remain challenging for suppressing the non-desirable hydrogen evolution reaction (HER). Here, a Mn-doped Co(OH)2 (named as Mn-Co(OH)2) has been synthesized by in situ reconstruction in the electrolyte, which is able to dissociate H2O molecules but inhibits the binding of H* species between each other owing to the increased interatomic spacing by the Mn-doping. The Mn-Co(OH)2 electrocatalyst offers a faradaic efficiency (FE) of as high as 98.9±1.7% at −0.6 V vs. the reversible hydrogen electrode (RHE) and an energy efficiency (EE) of 49.90±1.03% for NH3 production by NO3RR, which are among the highest of the recently reported state-of-the-art catalysts in neutral electrolyte. Moreover, negligible degradation at −200 mA cm−2 has been found for at least 500 h, which is the longest catalytic durations ever reported. This work paves a novel approach for the design and synthesis of efficient NO3RR electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Single Exposed Zn (0002) Plane and Sustainable Zn-Oriented Growth Achieving Highly Reversible Zinc Metal Batteries Structure-Agnostic Bioactivity-Driven Combinatorial Biosynthesis Reveals New Antidiabetic and Anticancer Triterpenoids Polyoxometalate-Based Single-Atom Catalyst with Precise Structure and Extremely Exposed Active Site for Efficient H2 Evolution High-Temperature Solid-State Post-synthetic Modification of Highly Luminescent Cu(I) Metallacycles toward New Luminescent Thermic Tracers Achieving Sub-ppm Sensitivity in SO2 Detection with a Chemically Stable Covalent Organic Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1