小气候温度对 3 种稻飞虱(半翅目:Delphacidae)发育期的影响:基于田间观察的物候学模型。

IF 1.8 3区 农林科学 Q2 ENTOMOLOGY Environmental Entomology Pub Date : 2024-04-11 DOI:10.1093/ee/nvae005
Ryota Mochizuki, Toshihisa Yashiro, Sachiyo Sanada-Morimura, Atsushi Maruyama
{"title":"小气候温度对 3 种稻飞虱(半翅目:Delphacidae)发育期的影响:基于田间观察的物候学模型。","authors":"Ryota Mochizuki, Toshihisa Yashiro, Sachiyo Sanada-Morimura, Atsushi Maruyama","doi":"10.1093/ee/nvae005","DOIUrl":null,"url":null,"abstract":"<p><p>Most pest phenology models are temperature dependent. Generally, the air temperature at reference height is used to predict pest development, but the air temperature varies between inside and outside the crop canopy, where pests reside. Here, we sampled 3 rice planthopper species-Nilaparvata lugens (Stål), Sogatella furcifera (Horváth), and Laodelphax striatellus (Fallén)-and micrometeorological observations in paddy fields to analyze how thermal environments inside the canopy affect pest development. Seasonal variations in the population density of these species were surveyed in 3 experimental fields with 2 water temperature plots (normal and low-water temperature plots). The development periods of the 3 species were predicted individually based on pest phenology models using temperatures recorded at 6 heights (0.0-2.0 m). We calculated the root mean square error (RMSE) values from the predicted and observed development periods for each rice planthopper. The development prediction using the temperature inside the canopy was more accurate than that utilizing the temperature at the reference height (2.0 m). In the low-water temperature plot, the RMSE value for N. lugens, S. furcifera, and L. striatellus was 6.4, 5.6, and 4.1 when using the temperature at the reference height (2.0 m), respectively, and 2.8, 3.8, and 2.9 when employing the temperature inside the canopy at 0.25 m, respectively. The development prediction utilizing the air temperature at the bottom (0.25 m) of canopy, where N. lugens resides, was most effective for N. lugens among the 3 species. These findings suggest the importance of utilizing microhabitat-based temperatures to predict pest development.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"259-267"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008736/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of microclimatic temperatures on the development period of 3 rice planthopper species (Hemiptera: Delphacidae): a phenology model based on field observations.\",\"authors\":\"Ryota Mochizuki, Toshihisa Yashiro, Sachiyo Sanada-Morimura, Atsushi Maruyama\",\"doi\":\"10.1093/ee/nvae005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most pest phenology models are temperature dependent. Generally, the air temperature at reference height is used to predict pest development, but the air temperature varies between inside and outside the crop canopy, where pests reside. Here, we sampled 3 rice planthopper species-Nilaparvata lugens (Stål), Sogatella furcifera (Horváth), and Laodelphax striatellus (Fallén)-and micrometeorological observations in paddy fields to analyze how thermal environments inside the canopy affect pest development. Seasonal variations in the population density of these species were surveyed in 3 experimental fields with 2 water temperature plots (normal and low-water temperature plots). The development periods of the 3 species were predicted individually based on pest phenology models using temperatures recorded at 6 heights (0.0-2.0 m). We calculated the root mean square error (RMSE) values from the predicted and observed development periods for each rice planthopper. The development prediction using the temperature inside the canopy was more accurate than that utilizing the temperature at the reference height (2.0 m). In the low-water temperature plot, the RMSE value for N. lugens, S. furcifera, and L. striatellus was 6.4, 5.6, and 4.1 when using the temperature at the reference height (2.0 m), respectively, and 2.8, 3.8, and 2.9 when employing the temperature inside the canopy at 0.25 m, respectively. The development prediction utilizing the air temperature at the bottom (0.25 m) of canopy, where N. lugens resides, was most effective for N. lugens among the 3 species. These findings suggest the importance of utilizing microhabitat-based temperatures to predict pest development.</p>\",\"PeriodicalId\":11751,\"journal\":{\"name\":\"Environmental Entomology\",\"volume\":\" \",\"pages\":\"259-267\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008736/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/ee/nvae005\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ee/nvae005","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大多数害虫物候模型都与温度有关。一般来说,参考高度的气温被用来预测害虫的发展,但害虫栖息的作物冠层内外的气温是不同的。在此,我们对 3 种稻飞虱--Nilaparvata lugens(Stål)、Sogatella furcifera(Horváth)和 Laodelphax striatellus(Fallén)--进行了取样和水田微气象观测,以分析冠层内的热环境如何影响害虫的发展。在 3 块试验田中的 2 个水温地块(正常水温地块和低水温地块)调查了这些物种种群密度的季节性变化。根据害虫物候模型,利用在 6 个高度(0.0-2.0 米)记录的温度,分别预测了这 3 种害虫的发育期。我们计算了每种稻飞虱发育期预测值和观测值的均方根误差(RMSE)值。利用冠层内温度预测的发育期比利用参考高度(2.0 米)温度预测的发育期更准确。在低水温地块中,利用参考高度(2.0 米)的温度预测 N. lugens、S. furcifera 和 L. striatellus 的发育期的均方根误差值分别为 6.4、5.6 和 4.1,而利用 0.25 米处冠层内温度预测的均方根误差值分别为 2.8、3.8 和 2.9。在这 3 个物种中,利用树冠底部(0.25 米)的气温(N. lugens 栖息于此)进行的发展预测对 N. lugens 最有效。这些发现表明,利用基于微生境的温度来预测害虫的发展非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of microclimatic temperatures on the development period of 3 rice planthopper species (Hemiptera: Delphacidae): a phenology model based on field observations.

Most pest phenology models are temperature dependent. Generally, the air temperature at reference height is used to predict pest development, but the air temperature varies between inside and outside the crop canopy, where pests reside. Here, we sampled 3 rice planthopper species-Nilaparvata lugens (Stål), Sogatella furcifera (Horváth), and Laodelphax striatellus (Fallén)-and micrometeorological observations in paddy fields to analyze how thermal environments inside the canopy affect pest development. Seasonal variations in the population density of these species were surveyed in 3 experimental fields with 2 water temperature plots (normal and low-water temperature plots). The development periods of the 3 species were predicted individually based on pest phenology models using temperatures recorded at 6 heights (0.0-2.0 m). We calculated the root mean square error (RMSE) values from the predicted and observed development periods for each rice planthopper. The development prediction using the temperature inside the canopy was more accurate than that utilizing the temperature at the reference height (2.0 m). In the low-water temperature plot, the RMSE value for N. lugens, S. furcifera, and L. striatellus was 6.4, 5.6, and 4.1 when using the temperature at the reference height (2.0 m), respectively, and 2.8, 3.8, and 2.9 when employing the temperature inside the canopy at 0.25 m, respectively. The development prediction utilizing the air temperature at the bottom (0.25 m) of canopy, where N. lugens resides, was most effective for N. lugens among the 3 species. These findings suggest the importance of utilizing microhabitat-based temperatures to predict pest development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Entomology
Environmental Entomology 生物-昆虫学
CiteScore
3.90
自引率
5.90%
发文量
97
审稿时长
3-8 weeks
期刊介绍: Environmental Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes reports on the interaction of insects with the biological, chemical, and physical aspects of their environment. In addition to research papers, Environmental Entomology publishes Reviews, interpretive articles in a Forum section, and Letters to the Editor.
期刊最新文献
A review of non-microbial biological control strategies against the Asian longhorned beetle (Coleoptera: Cerambycidae). Addition of ammonium acetate to torula yeast borax and its effect on captures of three species of economically important fruit flies (Diptera: Tephritidae). Testing the efficacy of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) as a inundative biological control agent in Western Nebraska. Sex-ratio distortion in a weed biological control agent, Ceratapion basicorne (Coleoptera: Brentidae), associated with a species of Rickettsia. Catching invasives with curiosity: the importance of passive biosecurity surveillance systems for invasive forest pest detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1