利用成像和机器学习确定各种铸造条件下半刻度曲面水模中的气泡大小

S. Dinda, Donghui Li, Fernando Guerra, Chad Cathcart, M. Barati
{"title":"利用成像和机器学习确定各种铸造条件下半刻度曲面水模中的气泡大小","authors":"S. Dinda, Donghui Li, Fernando Guerra, Chad Cathcart, M. Barati","doi":"10.33313/tr/0224","DOIUrl":null,"url":null,"abstract":"Parametric studies were performed in a 1:2 scaled, curved water model using shadowgraphy to estimate bubble sizes for different casting parameters such as gas flow rate, liquid flow rate and mold width. Bubble diameter calculations were based on a machine learning algorithm using ImageJ software. Bubble diameters were correlated with input parameters using a deep-learning algorithm. The model performance was determined based on the coefficient of determination (R 2 ). The model showed significant promise with bootstrapping aggregation, validated with five-fold cross-validation and improved accuracy.","PeriodicalId":384918,"journal":{"name":"Iron & Steel Technology","volume":"12 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubble Size Determination in a Half-Scale Curved Water Model Mold for Various Casting Conditions Using Imaging and Machine Learning\",\"authors\":\"S. Dinda, Donghui Li, Fernando Guerra, Chad Cathcart, M. Barati\",\"doi\":\"10.33313/tr/0224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parametric studies were performed in a 1:2 scaled, curved water model using shadowgraphy to estimate bubble sizes for different casting parameters such as gas flow rate, liquid flow rate and mold width. Bubble diameter calculations were based on a machine learning algorithm using ImageJ software. Bubble diameters were correlated with input parameters using a deep-learning algorithm. The model performance was determined based on the coefficient of determination (R 2 ). The model showed significant promise with bootstrapping aggregation, validated with five-fold cross-validation and improved accuracy.\",\"PeriodicalId\":384918,\"journal\":{\"name\":\"Iron & Steel Technology\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iron & Steel Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33313/tr/0224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iron & Steel Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33313/tr/0224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 1:2 比例的曲面水模型中进行了参数研究,使用阴影图估算不同铸造参数(如气体流速、液体流速和模具宽度)下的气泡大小。气泡直径的计算基于使用 ImageJ 软件的机器学习算法。使用深度学习算法将气泡直径与输入参数相关联。根据判定系数 (R 2 ) 确定模型性能。经五倍交叉验证后,该模型在引导聚合方面显示出了巨大的潜力,并提高了准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bubble Size Determination in a Half-Scale Curved Water Model Mold for Various Casting Conditions Using Imaging and Machine Learning
Parametric studies were performed in a 1:2 scaled, curved water model using shadowgraphy to estimate bubble sizes for different casting parameters such as gas flow rate, liquid flow rate and mold width. Bubble diameter calculations were based on a machine learning algorithm using ImageJ software. Bubble diameters were correlated with input parameters using a deep-learning algorithm. The model performance was determined based on the coefficient of determination (R 2 ). The model showed significant promise with bootstrapping aggregation, validated with five-fold cross-validation and improved accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Computers Shaped Steel During the Digital Revolution, With Special Reference to North America Effect of Recycling Sinter Dust as Calcium Ferrite in the Sintering Process on Sinter Quality and Emissions of CO2, NO, and SO2 Investigation of the Thermally Thick Alternative Reducing Agent Behavior in the Raceway Zone Bubble Size Determination in a Half-Scale Curved Water Model Mold for Various Casting Conditions Using Imaging and Machine Learning Titanium Nitride Nucleation and Growth During Steel Solidification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1