{"title":"认知惯性:注意力与记忆之间的循环互动影响学习","authors":"Brandon M. Turner, V. Sloutsky","doi":"10.1177/09637214231217989","DOIUrl":null,"url":null,"abstract":"In explaining how humans selectively attend, common frameworks often focus on how attention is allocated relative to an idealized allocation based on properties of the task. However, these perspectives often ignore different types of constraints that could help explain why attention was allocated in a particular way. For example, many computational models of learning are well equipped to explain how attention should ideally be allocated to minimize errors within the task, but these models often assume all features are perfectly encoded or that the only learning goal is to maximize accuracy. In this article, we argue for a more comprehensive view by using computational modeling to understand the complex interactions that occur between selective attention and memory. Our central thesis is that although selective attention directs attention to relevant dimensions, relevance can be established only through memories of previous experiences. Hence, attention is initially used to encode features and create memories, but thereafter, attention operates selectively on the basis of what is kept in memory. Through this lens, deviations from ideal performance can still be viewed as goal-directed selective attention, but the orientation of attention is subject to the constraints of the individual learner.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive Inertia: Cyclical Interactions Between Attention and Memory Shape Learning\",\"authors\":\"Brandon M. Turner, V. Sloutsky\",\"doi\":\"10.1177/09637214231217989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In explaining how humans selectively attend, common frameworks often focus on how attention is allocated relative to an idealized allocation based on properties of the task. However, these perspectives often ignore different types of constraints that could help explain why attention was allocated in a particular way. For example, many computational models of learning are well equipped to explain how attention should ideally be allocated to minimize errors within the task, but these models often assume all features are perfectly encoded or that the only learning goal is to maximize accuracy. In this article, we argue for a more comprehensive view by using computational modeling to understand the complex interactions that occur between selective attention and memory. Our central thesis is that although selective attention directs attention to relevant dimensions, relevance can be established only through memories of previous experiences. Hence, attention is initially used to encode features and create memories, but thereafter, attention operates selectively on the basis of what is kept in memory. Through this lens, deviations from ideal performance can still be viewed as goal-directed selective attention, but the orientation of attention is subject to the constraints of the individual learner.\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/09637214231217989\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/09637214231217989","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Cognitive Inertia: Cyclical Interactions Between Attention and Memory Shape Learning
In explaining how humans selectively attend, common frameworks often focus on how attention is allocated relative to an idealized allocation based on properties of the task. However, these perspectives often ignore different types of constraints that could help explain why attention was allocated in a particular way. For example, many computational models of learning are well equipped to explain how attention should ideally be allocated to minimize errors within the task, but these models often assume all features are perfectly encoded or that the only learning goal is to maximize accuracy. In this article, we argue for a more comprehensive view by using computational modeling to understand the complex interactions that occur between selective attention and memory. Our central thesis is that although selective attention directs attention to relevant dimensions, relevance can be established only through memories of previous experiences. Hence, attention is initially used to encode features and create memories, but thereafter, attention operates selectively on the basis of what is kept in memory. Through this lens, deviations from ideal performance can still be viewed as goal-directed selective attention, but the orientation of attention is subject to the constraints of the individual learner.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.