基于精确佐伊普里兹方程的ℓ1-2 正则化基础追求地震反演

GEOPHYSICS Pub Date : 2024-01-18 DOI:10.1190/geo2022-0336.1
Guangtan Huang, Shuying Wei, Davide Gei, Tongtao Wang
{"title":"基于精确佐伊普里兹方程的ℓ1-2 正则化基础追求地震反演","authors":"Guangtan Huang, Shuying Wei, Davide Gei, Tongtao Wang","doi":"10.1190/geo2022-0336.1","DOIUrl":null,"url":null,"abstract":"Sparsity constraints have been widely adopted in the regularization of ill-posed problems to obtain subsurface properties with sparseness feature. However, the target parameters are generally not sparsely distributed, and sparsity constraints lead to results that are missing information. Besides, smooth constraints (e.g., ℓ2 norm) lead to insufficient resolution of the inversion results. To overcome this issue, an effective solution is to convert the target parameters to a sparse representation, which can then be solved with sparsity constraints. For the estimation of elastic parameters, a high-resolution and reliable seismic basis pursuit inversion is proposed based on the exact Zoeppritz equation. Furthermore, the ℓ1–2 norm is proposed as a constraint, where a regularized function is minimized with the alternating direction method of multipliers (ADMM) algorithm. Numerical examples and real data applications demonstrate that the proposed method can not only improve the accuracy of the inversion results, especially the S-wave velocity and density information, but also increase the resolution of the inversion results. Furthermore, the ℓ1–2-norm constraint has better noise suppression demonstrating great potential in practical applications.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ℓ1–2-norm regularized basis pursuit seismic inversion based on exact Zoeppritz equation\",\"authors\":\"Guangtan Huang, Shuying Wei, Davide Gei, Tongtao Wang\",\"doi\":\"10.1190/geo2022-0336.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparsity constraints have been widely adopted in the regularization of ill-posed problems to obtain subsurface properties with sparseness feature. However, the target parameters are generally not sparsely distributed, and sparsity constraints lead to results that are missing information. Besides, smooth constraints (e.g., ℓ2 norm) lead to insufficient resolution of the inversion results. To overcome this issue, an effective solution is to convert the target parameters to a sparse representation, which can then be solved with sparsity constraints. For the estimation of elastic parameters, a high-resolution and reliable seismic basis pursuit inversion is proposed based on the exact Zoeppritz equation. Furthermore, the ℓ1–2 norm is proposed as a constraint, where a regularized function is minimized with the alternating direction method of multipliers (ADMM) algorithm. Numerical examples and real data applications demonstrate that the proposed method can not only improve the accuracy of the inversion results, especially the S-wave velocity and density information, but also increase the resolution of the inversion results. Furthermore, the ℓ1–2-norm constraint has better noise suppression demonstrating great potential in practical applications.\",\"PeriodicalId\":509604,\"journal\":{\"name\":\"GEOPHYSICS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GEOPHYSICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2022-0336.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2022-0336.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

稀疏性约束已被广泛应用于非确定问题的正则化,以获得具有稀疏性特征的地下属性。然而,目标参数通常不是稀疏分布的,稀疏约束会导致结果信息缺失。此外,平滑约束(如 ℓ2 norm)会导致反演结果的分辨率不足。为克服这一问题,有效的解决方案是将目标参数转换为稀疏表示,然后利用稀疏约束求解。为了估算弹性参数,基于精确的 Zoeppritz 方程,提出了一种高分辨率和可靠的地震基追随反演。此外,还提出了 ℓ1-2 准则作为约束条件,使用交替乘法(ADMM)算法最小化正则化函数。数值实例和实际数据应用表明,所提出的方法不仅能提高反演结果的精度,尤其是 S 波速度和密度信息,还能提高反演结果的分辨率。此外,ℓ1-2-norm 约束具有更好的噪声抑制效果,在实际应用中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ℓ1–2-norm regularized basis pursuit seismic inversion based on exact Zoeppritz equation
Sparsity constraints have been widely adopted in the regularization of ill-posed problems to obtain subsurface properties with sparseness feature. However, the target parameters are generally not sparsely distributed, and sparsity constraints lead to results that are missing information. Besides, smooth constraints (e.g., ℓ2 norm) lead to insufficient resolution of the inversion results. To overcome this issue, an effective solution is to convert the target parameters to a sparse representation, which can then be solved with sparsity constraints. For the estimation of elastic parameters, a high-resolution and reliable seismic basis pursuit inversion is proposed based on the exact Zoeppritz equation. Furthermore, the ℓ1–2 norm is proposed as a constraint, where a regularized function is minimized with the alternating direction method of multipliers (ADMM) algorithm. Numerical examples and real data applications demonstrate that the proposed method can not only improve the accuracy of the inversion results, especially the S-wave velocity and density information, but also increase the resolution of the inversion results. Furthermore, the ℓ1–2-norm constraint has better noise suppression demonstrating great potential in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust unsupervised 5D seismic data reconstruction on both regular and irregular grid Effect of fluid patch clustering on the P-wave velocity-saturation relation: a critical saturation model Strategic Geosteering Workflow with Uncertainty Quantification and Deep Learning: Initial Test on the Goliat Field Data Review on 3D electromagnetic modeling and inversion for Mineral Exploration High dynamic range land wavefield reconstruction from randomized acquisition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1