Abdel wahhab Lourari, T. Benkedjouh, Bilal El Yousfi, A. Soualhi
{"title":"基于 ANFIS 的轴承剩余使用寿命预测框架","authors":"Abdel wahhab Lourari, T. Benkedjouh, Bilal El Yousfi, A. Soualhi","doi":"10.36001/ijphm.2024.v15i1.3791","DOIUrl":null,"url":null,"abstract":"Bearings are critical components extensively used in rotary machines, often being the leading cause of unexpected machine shutdowns. To mitigate system failures, it is crucial to implement effective maintenance strategies. This paper introduces a novel methodology for bearing prognostics, employing Wavelet Packet Decomposition (WPD) for data preprocessing, Sequential Backward Selection (SBS) for feature selection, and Adaptive Neuro-Fuzzy Inference System (ANFIS) networks for prognostic modeling. The proposed approach consists of two key steps. Firstly, the data undergoes preprocessing through Wavelet Packet Decomposition, enhancing the quality and extracting relevant features. Subsequently, the Remaining Useful Life (RUL) of the bearing is predicted using a degradation model. The accuracy of the proposed method is evaluated using a bearing life dataset obtained from a run-to-failure test (IMS dataset). The results demonstrate the remarkable capability of the ANFIS model to learn and accurately estimate the system’s RUL. By leveraging the combined power of WPD, SBS, and ANFIS, this methodology showcases its potential as an effective prognostic tool for bearing health assessment and proactive maintenance planning.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANFIS-based Framework for the Prediction of Bearing’s Remaining Useful Life\",\"authors\":\"Abdel wahhab Lourari, T. Benkedjouh, Bilal El Yousfi, A. Soualhi\",\"doi\":\"10.36001/ijphm.2024.v15i1.3791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bearings are critical components extensively used in rotary machines, often being the leading cause of unexpected machine shutdowns. To mitigate system failures, it is crucial to implement effective maintenance strategies. This paper introduces a novel methodology for bearing prognostics, employing Wavelet Packet Decomposition (WPD) for data preprocessing, Sequential Backward Selection (SBS) for feature selection, and Adaptive Neuro-Fuzzy Inference System (ANFIS) networks for prognostic modeling. The proposed approach consists of two key steps. Firstly, the data undergoes preprocessing through Wavelet Packet Decomposition, enhancing the quality and extracting relevant features. Subsequently, the Remaining Useful Life (RUL) of the bearing is predicted using a degradation model. The accuracy of the proposed method is evaluated using a bearing life dataset obtained from a run-to-failure test (IMS dataset). The results demonstrate the remarkable capability of the ANFIS model to learn and accurately estimate the system’s RUL. By leveraging the combined power of WPD, SBS, and ANFIS, this methodology showcases its potential as an effective prognostic tool for bearing health assessment and proactive maintenance planning.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2024.v15i1.3791\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2024.v15i1.3791","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
ANFIS-based Framework for the Prediction of Bearing’s Remaining Useful Life
Bearings are critical components extensively used in rotary machines, often being the leading cause of unexpected machine shutdowns. To mitigate system failures, it is crucial to implement effective maintenance strategies. This paper introduces a novel methodology for bearing prognostics, employing Wavelet Packet Decomposition (WPD) for data preprocessing, Sequential Backward Selection (SBS) for feature selection, and Adaptive Neuro-Fuzzy Inference System (ANFIS) networks for prognostic modeling. The proposed approach consists of two key steps. Firstly, the data undergoes preprocessing through Wavelet Packet Decomposition, enhancing the quality and extracting relevant features. Subsequently, the Remaining Useful Life (RUL) of the bearing is predicted using a degradation model. The accuracy of the proposed method is evaluated using a bearing life dataset obtained from a run-to-failure test (IMS dataset). The results demonstrate the remarkable capability of the ANFIS model to learn and accurately estimate the system’s RUL. By leveraging the combined power of WPD, SBS, and ANFIS, this methodology showcases its potential as an effective prognostic tool for bearing health assessment and proactive maintenance planning.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.