Janus MoSSe/XN(X = Al、Ga)异质结构中本征原子缺陷的作用:第一性原理研究

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER Condensed Matter Physics Pub Date : 2024-01-17 DOI:10.5488/CMP.26.43703
Ö. C. Yelgel
{"title":"Janus MoSSe/XN(X = Al、Ga)异质结构中本征原子缺陷的作用:第一性原理研究","authors":"Ö. C. Yelgel","doi":"10.5488/CMP.26.43703","DOIUrl":null,"url":null,"abstract":"The interactions between different layers in van der Waals heterostructures have a significant impact on the electronic and optical characteristics. By utilizing the intrinsic dipole moment of Janus transition metal dichalcogenides (TMDs), it is possible to tune these interlayer interactions. We systematically investigate structural and electronic properties of Janus MoSSe monolayer/graphene-like Aluminum Nitrides (MoSSe/g-AlN) heterostructures with point defects by employing density functional theory calculations with the inclusion of the nonlocal van der Waals correction. The findings indicate that the examined heterostructures are energetically and thermodynamically stable, and their electronic structures can be readily modified by creating a heterostructure with the defects in g-AlN monolayer. This heterostructure exhibits an indirect semiconductor with the band gap of 1.627 eV which is in the visible infrared region. It can be of interest for photovoltaic applications. When a single N atom or Al atom is removed from a monolayer of g-AlN in the heterostructure, creating vacancy defects, the material exhibits similar electronic band structures with localized states within the band gap which can be used for deliberately tailoring the electronic properties of the MoSSe/g-AlN heterostructure. These tunable results can offer exciting opportunities for designing nanoelectronics devices based on MoSSe/g-AlN heterojunctions.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of intrinsic atomic defects in a Janus MoSSe/XN (X = Al, Ga) heterostructure: a first principles study\",\"authors\":\"Ö. C. Yelgel\",\"doi\":\"10.5488/CMP.26.43703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interactions between different layers in van der Waals heterostructures have a significant impact on the electronic and optical characteristics. By utilizing the intrinsic dipole moment of Janus transition metal dichalcogenides (TMDs), it is possible to tune these interlayer interactions. We systematically investigate structural and electronic properties of Janus MoSSe monolayer/graphene-like Aluminum Nitrides (MoSSe/g-AlN) heterostructures with point defects by employing density functional theory calculations with the inclusion of the nonlocal van der Waals correction. The findings indicate that the examined heterostructures are energetically and thermodynamically stable, and their electronic structures can be readily modified by creating a heterostructure with the defects in g-AlN monolayer. This heterostructure exhibits an indirect semiconductor with the band gap of 1.627 eV which is in the visible infrared region. It can be of interest for photovoltaic applications. When a single N atom or Al atom is removed from a monolayer of g-AlN in the heterostructure, creating vacancy defects, the material exhibits similar electronic band structures with localized states within the band gap which can be used for deliberately tailoring the electronic properties of the MoSSe/g-AlN heterostructure. These tunable results can offer exciting opportunities for designing nanoelectronics devices based on MoSSe/g-AlN heterojunctions.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.26.43703\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.26.43703","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

范德华异质结构中不同层之间的相互作用对电子和光学特性有重大影响。通过利用 Janus 过渡金属二卤化物(TMD)的固有偶极矩,可以调整这些层间相互作用。我们采用密度泛函理论计算,并加入非局部范德华修正,系统地研究了具有点缺陷的 Janus MoSSe 单层/类石墨烯氮化铝(MoSSe/g-AlN)异质结构的结构和电子特性。研究结果表明,所研究的异质结构在能量和热力学上都是稳定的,而且它们的电子结构可以通过在 g-AlN 单层中创建带有缺陷的异质结构而轻易改变。这种异质结构是一种间接半导体,其带隙为 1.627 eV,处于可见红外区域。它可用于光伏应用。当从异质结构中的单层 g-AlN 中移除单个 N 原子或 Al 原子,产生空位缺陷时,材料会显示出类似的电子能带结构,并在能带隙内形成局部态,这可用于刻意调整 MoSSe/g-AlN 异质结构的电子特性。这些可调谐的结果为设计基于 MoSSe/g-AlN 异质结的纳米电子器件提供了令人兴奋的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of intrinsic atomic defects in a Janus MoSSe/XN (X = Al, Ga) heterostructure: a first principles study
The interactions between different layers in van der Waals heterostructures have a significant impact on the electronic and optical characteristics. By utilizing the intrinsic dipole moment of Janus transition metal dichalcogenides (TMDs), it is possible to tune these interlayer interactions. We systematically investigate structural and electronic properties of Janus MoSSe monolayer/graphene-like Aluminum Nitrides (MoSSe/g-AlN) heterostructures with point defects by employing density functional theory calculations with the inclusion of the nonlocal van der Waals correction. The findings indicate that the examined heterostructures are energetically and thermodynamically stable, and their electronic structures can be readily modified by creating a heterostructure with the defects in g-AlN monolayer. This heterostructure exhibits an indirect semiconductor with the band gap of 1.627 eV which is in the visible infrared region. It can be of interest for photovoltaic applications. When a single N atom or Al atom is removed from a monolayer of g-AlN in the heterostructure, creating vacancy defects, the material exhibits similar electronic band structures with localized states within the band gap which can be used for deliberately tailoring the electronic properties of the MoSSe/g-AlN heterostructure. These tunable results can offer exciting opportunities for designing nanoelectronics devices based on MoSSe/g-AlN heterojunctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Condensed Matter Physics
Condensed Matter Physics 物理-物理:凝聚态物理
CiteScore
1.10
自引率
16.70%
发文量
17
审稿时长
1 months
期刊介绍: Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.
期刊最新文献
Computer simulations of soft matter. On 60-th anniversary of Jaroslav Ilnytskyi Dimerizing hard spherocylinders in porous media Finite size effects and optimization of the calculation of the surface tension in surfactant mixtures at liquid/vapour interfaces Universal properties of branched copolymers in dilute solutions Revisiting the wetting behavior of solid surfaces by water-like models within a density functional theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1