YebC 在持续性莱姆病中调节 OspC 和 VlsE 的反向调节以及 VlsE 的表达

Andrew Zoss, S. Raghunandanan, X. F. Yang
{"title":"YebC 在持续性莱姆病中调节 OspC 和 VlsE 的反向调节以及 VlsE 的表达","authors":"Andrew Zoss, S. Raghunandanan, X. F. Yang","doi":"10.18060/27717","DOIUrl":null,"url":null,"abstract":"Background & Hypothesis: Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common vector-borne infectious disease in the United States. Although easily treated with antibiotics, undiagnosed cases may develop into persistent infections with complications including Lyme carditis, neuroborreliosis, & arthritis. VlsE antigen variation is one of the major mechanisms employed by B. burgdorferi to establish persistent infection. We hypothesize that YebC modulates VlsE expression and antigen variation, enabling the shift from acute to persistent infection. \nMaterials & Methods: C3H/HeN or C3H/SCID mice were infected with the B. burgdorferi strain 5A4NP1, yebC mutant, and yebC complement at a dose of 105 or 106 spirochetes. Mice were sacrificed at days 7, 30, 60, and 90 post-infection and tissue samples were subjected to RNA and DNA extraction. \nResults: YebC levels were closely associated with the upregulation of vlsE and the downregulation of ospC in vitro and in vivo. The yebC mutant displayed loss of infectivity in C3H/HeN mice, and reduced VlsE antigen variation. \nConclusion & Impact: This data demonstrates that YebC of B burgdorferi can regulate the frequency of vlsE recombination and modulates the inverse regulation of OspC and VlsE. This new factor may serve as an avenue for developing drugs which can target vlsE recombination to combat complications of persistent Lyme disease.","PeriodicalId":20522,"journal":{"name":"Proceedings of IMPRS","volume":"34 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YebC Modulates OspC and VlsE Inverse Regulation and VlsE Expression in Persistent Lyme Disease\",\"authors\":\"Andrew Zoss, S. Raghunandanan, X. F. Yang\",\"doi\":\"10.18060/27717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background & Hypothesis: Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common vector-borne infectious disease in the United States. Although easily treated with antibiotics, undiagnosed cases may develop into persistent infections with complications including Lyme carditis, neuroborreliosis, & arthritis. VlsE antigen variation is one of the major mechanisms employed by B. burgdorferi to establish persistent infection. We hypothesize that YebC modulates VlsE expression and antigen variation, enabling the shift from acute to persistent infection. \\nMaterials & Methods: C3H/HeN or C3H/SCID mice were infected with the B. burgdorferi strain 5A4NP1, yebC mutant, and yebC complement at a dose of 105 or 106 spirochetes. Mice were sacrificed at days 7, 30, 60, and 90 post-infection and tissue samples were subjected to RNA and DNA extraction. \\nResults: YebC levels were closely associated with the upregulation of vlsE and the downregulation of ospC in vitro and in vivo. The yebC mutant displayed loss of infectivity in C3H/HeN mice, and reduced VlsE antigen variation. \\nConclusion & Impact: This data demonstrates that YebC of B burgdorferi can regulate the frequency of vlsE recombination and modulates the inverse regulation of OspC and VlsE. This new factor may serve as an avenue for developing drugs which can target vlsE recombination to combat complications of persistent Lyme disease.\",\"PeriodicalId\":20522,\"journal\":{\"name\":\"Proceedings of IMPRS\",\"volume\":\"34 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IMPRS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18060/27717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IMPRS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18060/27717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景与假设:莱姆病是由鲍氏不动杆菌(Borrelia burgdorferi)引起的,是美国最常见的病媒传染病。虽然使用抗生素很容易治疗,但未确诊的病例可能会发展成持续性感染,并出现莱姆心肌炎、神经性包虫病和关节炎等并发症。VlsE 抗原变异是 B. burgdorferi 建立持续感染的主要机制之一。我们假设 YebC 可调节 VlsE 的表达和抗原变异,从而实现从急性感染到持续感染的转变。材料与方法用B. burgdorferi菌株5A4NP1、yebC突变体和yebC补体感染C3H/HeN或C3H/SCID小鼠,感染剂量为105或106个螺旋体。小鼠在感染后第 7、30、60 和 90 天被处死,并对组织样本进行 RNA 和 DNA 提取。结果YebC水平与体外和体内vlsE的上调和ospC的下调密切相关。yebC突变体在C3H/HeN小鼠中表现出感染性丧失,VlsE抗原变异减少。结论与影响:该数据表明,布氏杆菌的 YebC 可调节 VlsE 重组的频率,并调节 OspC 和 VlsE 的反向调节。这一新因子可作为开发针对 vlsE 重组的药物的途径,以防治顽固性莱姆病的并发症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YebC Modulates OspC and VlsE Inverse Regulation and VlsE Expression in Persistent Lyme Disease
Background & Hypothesis: Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common vector-borne infectious disease in the United States. Although easily treated with antibiotics, undiagnosed cases may develop into persistent infections with complications including Lyme carditis, neuroborreliosis, & arthritis. VlsE antigen variation is one of the major mechanisms employed by B. burgdorferi to establish persistent infection. We hypothesize that YebC modulates VlsE expression and antigen variation, enabling the shift from acute to persistent infection. Materials & Methods: C3H/HeN or C3H/SCID mice were infected with the B. burgdorferi strain 5A4NP1, yebC mutant, and yebC complement at a dose of 105 or 106 spirochetes. Mice were sacrificed at days 7, 30, 60, and 90 post-infection and tissue samples were subjected to RNA and DNA extraction. Results: YebC levels were closely associated with the upregulation of vlsE and the downregulation of ospC in vitro and in vivo. The yebC mutant displayed loss of infectivity in C3H/HeN mice, and reduced VlsE antigen variation. Conclusion & Impact: This data demonstrates that YebC of B burgdorferi can regulate the frequency of vlsE recombination and modulates the inverse regulation of OspC and VlsE. This new factor may serve as an avenue for developing drugs which can target vlsE recombination to combat complications of persistent Lyme disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracranial Meningioma Metastasis: A Systematic Review of Clinical Characteristics, Management Strategies, and Outcomes Intraventricular Ependymoma in Pediatric Patients: A Systematic Review of Demographics, Clinical Characteristics, and Outcomes Intraventricular Ependymoma in Pediatric Patients: A Systematic Review of Demographics, Clinical Characteristics, and Outcomes Extracranial Meningioma Metastasis: A Systematic Review of Clinical Characteristics, Management Strategies, and Outcomes Exploring Differentiation and TEAD Inhibition in NF2-Knockdown NES Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1