Jian Li, Guoning Du, Dewen Qin, Wensun Yin, Jun Tan, Zhaolun Liu, Peng Song
{"title":"基于物理信息神经网络的激发时间成像条件反向时间迁移,利用光流矢量进行波场分解的行进时间计算","authors":"Jian Li, Guoning Du, Dewen Qin, Wensun Yin, Jun Tan, Zhaolun Liu, Peng Song","doi":"10.1093/jge/gxad106","DOIUrl":null,"url":null,"abstract":"\n Although the excitation-time imaging condition offers a lower memory consumption and higher computational efficiency compared to cross-correlation imaging condition, it has not been widely used in industrial applications because of the accuracy problem of traveltime calculation and the influence of low-wave-number noise. In this paper, we introduce the physics-informed neural network (PINN) algorithm to achieve a high-precision traveltime calculation of the source forward wavefield. Subsequently, we introduce a technique for high-precision wavefield decomposition of the reverse-time wavefield via the optical flow vector, enabling us to realize a correlation-weighted stacking imaging of each wavefield. Model experiments and real data processing show that the proposed traveltime calculation algorithm based on PINN offers high accuracy and good applicability in the excitation time reverse-time migration imaging of complex models, and correlation-weighted stacking imaging based on optical flow vector-based wavefield separation can significantly suppress the noise with low wavenumber and achieve high-precision imaging of complex models.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excitation time imaging condition reverse time migration based on physics-informed neural network traveltime calculation with wavefield decomposition using optical flow vector\",\"authors\":\"Jian Li, Guoning Du, Dewen Qin, Wensun Yin, Jun Tan, Zhaolun Liu, Peng Song\",\"doi\":\"10.1093/jge/gxad106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Although the excitation-time imaging condition offers a lower memory consumption and higher computational efficiency compared to cross-correlation imaging condition, it has not been widely used in industrial applications because of the accuracy problem of traveltime calculation and the influence of low-wave-number noise. In this paper, we introduce the physics-informed neural network (PINN) algorithm to achieve a high-precision traveltime calculation of the source forward wavefield. Subsequently, we introduce a technique for high-precision wavefield decomposition of the reverse-time wavefield via the optical flow vector, enabling us to realize a correlation-weighted stacking imaging of each wavefield. Model experiments and real data processing show that the proposed traveltime calculation algorithm based on PINN offers high accuracy and good applicability in the excitation time reverse-time migration imaging of complex models, and correlation-weighted stacking imaging based on optical flow vector-based wavefield separation can significantly suppress the noise with low wavenumber and achieve high-precision imaging of complex models.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxad106\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad106","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Excitation time imaging condition reverse time migration based on physics-informed neural network traveltime calculation with wavefield decomposition using optical flow vector
Although the excitation-time imaging condition offers a lower memory consumption and higher computational efficiency compared to cross-correlation imaging condition, it has not been widely used in industrial applications because of the accuracy problem of traveltime calculation and the influence of low-wave-number noise. In this paper, we introduce the physics-informed neural network (PINN) algorithm to achieve a high-precision traveltime calculation of the source forward wavefield. Subsequently, we introduce a technique for high-precision wavefield decomposition of the reverse-time wavefield via the optical flow vector, enabling us to realize a correlation-weighted stacking imaging of each wavefield. Model experiments and real data processing show that the proposed traveltime calculation algorithm based on PINN offers high accuracy and good applicability in the excitation time reverse-time migration imaging of complex models, and correlation-weighted stacking imaging based on optical flow vector-based wavefield separation can significantly suppress the noise with low wavenumber and achieve high-precision imaging of complex models.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.