{"title":"CBX8通过Wnt/β-catenin信号通路促进肺癌的上皮-间质转化、迁移和侵袭","authors":"Xiaoping Cai, Yuankai Lv, Jiongwei Pan, Zhuo Cao, Junzhi Zhang, Yuling Li, Hao Zheng","doi":"10.2174/0113892037273375231204080906","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung cancer (LC) is primarily responsible for cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features and is associated with the development of tumors. CBX8, a member of the PcG protein family, plays a critical role in various cancers, containing LC. However, specific regulatory mechanisms of CBX8 in LC progression are not fully understood. This study aimed to investigate the regulatory role of CBX8 in LC progression.</p><p><strong>Methods: </strong>Bioinformatics was used to analyze the relationship between CBX8 level and tumor and the enrichment pathway of CBX8 enrichment. qRT-PCR was used to detect the differential expression of CBX8 in LC cells and normal lung epithelial cells. The effects of knockdown or overexpression of CBX8 on the proliferation, migration and invasion of LC cells were evaluated by CCK- -8 assay and Transwell assay, and the levels of proteins associated with the EMT pathway and Wnt/ β-catenin signaling pathway were detected by western blot.</p><p><strong>Results: </strong>Bioinformatics analysis revealed that CBX8 was highly expressed in LC and enriched on the Wnt/β-catenin signaling pathway. The expression level of CBX8 was significantly elevated in LC cells. Knockdown of CBX8 significantly inhibited cell proliferation, migration and invasion, and decreased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. Conversely, overexpression of CBX8 promoted cell proliferation, migration and invasion, and increased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. The Wnt inhibitor IWP-4 alleviated the effects produced by overexpression of CBX8.</p><p><strong>Conclusion: </strong>Collectively, these data demonstrated that CBX8 induced EMT through Wnt/β-- catenin signaling, driving migration and invasion of LC cells.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CBX8 Promotes Epithelial-mesenchymal Transition, Migration, and Invasion of Lung Cancer through Wnt/β-catenin Signaling Pathway.\",\"authors\":\"Xiaoping Cai, Yuankai Lv, Jiongwei Pan, Zhuo Cao, Junzhi Zhang, Yuling Li, Hao Zheng\",\"doi\":\"10.2174/0113892037273375231204080906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lung cancer (LC) is primarily responsible for cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features and is associated with the development of tumors. CBX8, a member of the PcG protein family, plays a critical role in various cancers, containing LC. However, specific regulatory mechanisms of CBX8 in LC progression are not fully understood. This study aimed to investigate the regulatory role of CBX8 in LC progression.</p><p><strong>Methods: </strong>Bioinformatics was used to analyze the relationship between CBX8 level and tumor and the enrichment pathway of CBX8 enrichment. qRT-PCR was used to detect the differential expression of CBX8 in LC cells and normal lung epithelial cells. The effects of knockdown or overexpression of CBX8 on the proliferation, migration and invasion of LC cells were evaluated by CCK- -8 assay and Transwell assay, and the levels of proteins associated with the EMT pathway and Wnt/ β-catenin signaling pathway were detected by western blot.</p><p><strong>Results: </strong>Bioinformatics analysis revealed that CBX8 was highly expressed in LC and enriched on the Wnt/β-catenin signaling pathway. The expression level of CBX8 was significantly elevated in LC cells. Knockdown of CBX8 significantly inhibited cell proliferation, migration and invasion, and decreased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. Conversely, overexpression of CBX8 promoted cell proliferation, migration and invasion, and increased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. The Wnt inhibitor IWP-4 alleviated the effects produced by overexpression of CBX8.</p><p><strong>Conclusion: </strong>Collectively, these data demonstrated that CBX8 induced EMT through Wnt/β-- catenin signaling, driving migration and invasion of LC cells.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037273375231204080906\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037273375231204080906","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
CBX8 Promotes Epithelial-mesenchymal Transition, Migration, and Invasion of Lung Cancer through Wnt/β-catenin Signaling Pathway.
Background: Lung cancer (LC) is primarily responsible for cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features and is associated with the development of tumors. CBX8, a member of the PcG protein family, plays a critical role in various cancers, containing LC. However, specific regulatory mechanisms of CBX8 in LC progression are not fully understood. This study aimed to investigate the regulatory role of CBX8 in LC progression.
Methods: Bioinformatics was used to analyze the relationship between CBX8 level and tumor and the enrichment pathway of CBX8 enrichment. qRT-PCR was used to detect the differential expression of CBX8 in LC cells and normal lung epithelial cells. The effects of knockdown or overexpression of CBX8 on the proliferation, migration and invasion of LC cells were evaluated by CCK- -8 assay and Transwell assay, and the levels of proteins associated with the EMT pathway and Wnt/ β-catenin signaling pathway were detected by western blot.
Results: Bioinformatics analysis revealed that CBX8 was highly expressed in LC and enriched on the Wnt/β-catenin signaling pathway. The expression level of CBX8 was significantly elevated in LC cells. Knockdown of CBX8 significantly inhibited cell proliferation, migration and invasion, and decreased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. Conversely, overexpression of CBX8 promoted cell proliferation, migration and invasion, and increased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. The Wnt inhibitor IWP-4 alleviated the effects produced by overexpression of CBX8.
Conclusion: Collectively, these data demonstrated that CBX8 induced EMT through Wnt/β-- catenin signaling, driving migration and invasion of LC cells.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.