Qin Yin, Jun Gu, Pengju Ren, Zhiqiang Guan, Yongxiang Wang, Ruijun Bai, Yu Liu
{"title":"抗生素造成的微生物群失调保护了 OAOP 小鼠的软骨退化。","authors":"Qin Yin, Jun Gu, Pengju Ren, Zhiqiang Guan, Yongxiang Wang, Ruijun Bai, Yu Liu","doi":"10.1530/JOE-23-0330","DOIUrl":null,"url":null,"abstract":"<p><p>The role of this study was to evaluate the impact of gut microbiota depletion on the progression of osteoarthritis (OA) and osteoporosis (OP). We conducted an experimental mouse model of OA and OP over an 8-week period. The model involved destabilization of the medial meniscus and bilateral ovariectomy (OVX). To deplete the gut microbiota, we administered a course of antibiotics for 8 weeks. The severity of OA was assessed through micro-CT scanning, X-rays, and immunohistochemical staining. Microbiome analysis was performed using PCR of 16S DNA on fecal samples, and the levels of serum lipopolysaccharide, interleukin 6, tumor necrosis factor-α (TNF-α), osteocalcin, and estrogen were measured using enzyme-linked immunosorbent assay. We found that in comparison to the OVX+OA group, the OVX+OA+ABT group exhibited increased bone mineral density (P < 0.0001), bone volume fraction (P = 0.0051), and trabecular number (P = 0.0023) in the metaphyseal bone. Additionally, cartilage injury and levels of matrix metalloproteinase 13 were reduced in the OVX+OA+ABT group compared to the OVX+OA group. Moreover, the OVX+OA+ABT group demonstrated decreased relative abundance of Bacteroidetes, serum lipopolysaccharide (P = 0.0005), TNF-α (P < 0.0001), CTX-1 (P = 0.0002), and increased expression of bone formation markers. These findings were further supported by correlation network analyses. Depletion of gut microbiota was shown to protect against bone loss and cartilage degradation by modulating the composition of the gut microbiota in osteoporosis and osteoarthritis.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiome dysbiosis by antibiotics protects cartilage degradation in OAOP mice.\",\"authors\":\"Qin Yin, Jun Gu, Pengju Ren, Zhiqiang Guan, Yongxiang Wang, Ruijun Bai, Yu Liu\",\"doi\":\"10.1530/JOE-23-0330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of this study was to evaluate the impact of gut microbiota depletion on the progression of osteoarthritis (OA) and osteoporosis (OP). We conducted an experimental mouse model of OA and OP over an 8-week period. The model involved destabilization of the medial meniscus and bilateral ovariectomy (OVX). To deplete the gut microbiota, we administered a course of antibiotics for 8 weeks. The severity of OA was assessed through micro-CT scanning, X-rays, and immunohistochemical staining. Microbiome analysis was performed using PCR of 16S DNA on fecal samples, and the levels of serum lipopolysaccharide, interleukin 6, tumor necrosis factor-α (TNF-α), osteocalcin, and estrogen were measured using enzyme-linked immunosorbent assay. We found that in comparison to the OVX+OA group, the OVX+OA+ABT group exhibited increased bone mineral density (P < 0.0001), bone volume fraction (P = 0.0051), and trabecular number (P = 0.0023) in the metaphyseal bone. Additionally, cartilage injury and levels of matrix metalloproteinase 13 were reduced in the OVX+OA+ABT group compared to the OVX+OA group. Moreover, the OVX+OA+ABT group demonstrated decreased relative abundance of Bacteroidetes, serum lipopolysaccharide (P = 0.0005), TNF-α (P < 0.0001), CTX-1 (P = 0.0002), and increased expression of bone formation markers. These findings were further supported by correlation network analyses. Depletion of gut microbiota was shown to protect against bone loss and cartilage degradation by modulating the composition of the gut microbiota in osteoporosis and osteoarthritis.</p>\",\"PeriodicalId\":15740,\"journal\":{\"name\":\"Journal of Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JOE-23-0330\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-23-0330","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
摘要
本研究的目的是评估肠道微生物群耗竭对骨关节炎(OA)和骨质疏松症(OP)进展的影响。我们对小鼠进行了为期 8 周的 OA 和 OP 实验模型试验。该模型涉及内侧半月板失稳(DMM)和双侧卵巢切除术(OVX)。为了消耗肠道微生物群,我们使用了为期8周的抗生素。通过微型 CT 扫描、X 光片和免疫组化染色评估 OA 的严重程度。微生物组分析是通过对粪便样本进行16S DNA聚合酶链式反应(PCR)进行的,血清脂多糖、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)、骨钙素和雌激素的水平则是通过酶联免疫吸附试验(ELISA)测定的。我们发现,与 OVX+OA 组相比,OVX+OA+ABT 组的骨矿物质密度(BMD)增加(P<0.05)。
Microbiome dysbiosis by antibiotics protects cartilage degradation in OAOP mice.
The role of this study was to evaluate the impact of gut microbiota depletion on the progression of osteoarthritis (OA) and osteoporosis (OP). We conducted an experimental mouse model of OA and OP over an 8-week period. The model involved destabilization of the medial meniscus and bilateral ovariectomy (OVX). To deplete the gut microbiota, we administered a course of antibiotics for 8 weeks. The severity of OA was assessed through micro-CT scanning, X-rays, and immunohistochemical staining. Microbiome analysis was performed using PCR of 16S DNA on fecal samples, and the levels of serum lipopolysaccharide, interleukin 6, tumor necrosis factor-α (TNF-α), osteocalcin, and estrogen were measured using enzyme-linked immunosorbent assay. We found that in comparison to the OVX+OA group, the OVX+OA+ABT group exhibited increased bone mineral density (P < 0.0001), bone volume fraction (P = 0.0051), and trabecular number (P = 0.0023) in the metaphyseal bone. Additionally, cartilage injury and levels of matrix metalloproteinase 13 were reduced in the OVX+OA+ABT group compared to the OVX+OA group. Moreover, the OVX+OA+ABT group demonstrated decreased relative abundance of Bacteroidetes, serum lipopolysaccharide (P = 0.0005), TNF-α (P < 0.0001), CTX-1 (P = 0.0002), and increased expression of bone formation markers. These findings were further supported by correlation network analyses. Depletion of gut microbiota was shown to protect against bone loss and cartilage degradation by modulating the composition of the gut microbiota in osteoporosis and osteoarthritis.
期刊介绍:
Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.