Clare M Diester, Hallie Balint, James C Gillespie, Aron H Lichtman, Laura J Sim-Selley, Dana E Selley, S Stevens Negus
{"title":"反复使用单酰甘油脂肪酶抑制剂 MJN110 对雌雄小鼠因疼痛而抑制筑巢和大麻素 1 受体功能的影响","authors":"Clare M Diester, Hallie Balint, James C Gillespie, Aron H Lichtman, Laura J Sim-Selley, Dana E Selley, S Stevens Negus","doi":"10.1124/jpet.123.001940","DOIUrl":null,"url":null,"abstract":"<p><p>MJN110 inhibits the enzyme monoacylglycerol lipase (MAGL) to increase levels of the endocannabinoid 2-arachidonoylglycerol , an endogenous high-efficacy agonist of cannabinoid 1 and 2 receptors (CB<sub>1/2</sub>R). MAGL inhibitors are under consideration as candidate analgesics, and we reported previously that acute MJN110 produced partial antinociception in an assay of pain-related behavioral depression in mice. Given the need for repeated analgesic administration in many pain patients and the potential for analgesic tolerance during repeated treatment, this study examined antinociceptive effects of repeated MJN110 on pain-related behavioral depression and CB<sub>1</sub>R-mediated G-protein function. Male and female ICR mice were treated daily for 7 days in a 2 × 2 design with (a) 1.0 mg/kg/d MJN110 or its vehicle followed by (b) intraperitoneal injection of dilute lactic acid (IP acid) or its vehicle as a visceral noxious stimulus to depress nesting behavior. After behavioral testing, G-protein activity was assessed in lumbar spinal cord (LSC) and five brain regions using an assay of CP55,940-stimulated [<sup>35</sup>S]GTPɣS activation. As reported previously, acute MJN110 produced partial but significant relief of IP acid-induced nesting depression on day 1. After 7 days, MJN110 continued to produce significant but partial antinociception in males, while antinociceptive tolerance developed in females. Repeated MJN110 also produced modest decreases in maximum levels of CP55,940-induced [<sup>35</sup>S]GTPɣS binding in spinal cord and most brain regions. These results indicate that repeated treatment with a relatively low antinociceptive MJN110 dose produces only partial and sex-dependent transient antinociception associated with the emergence of CB<sub>1</sub>R desensitization in this model of IP acid-induced nesting depression. SIGNIFICANCE STATEMENT: The drug MJN110 inhibits monoacylglycerol lipase (MAGL) to increase levels of the endogenous cannabinoid 2-arachidonoylglycerol and produce potentially useful therapeutic effects including analgesia. This study used an assay of pain-related behavioral depression in mice to show that repeated MJN110 treatment produced (1) weak but sustained antinociception in male mice, (2) antinociceptive tolerance in females, and (3) modest cannabinoid-receptor desensitization that varied by region and sex. Antinociceptive tolerance may limit the utility of MJN110 for treatment of pain.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Repeated Treatment with the Monoacylglycerol Lipase Inhibitor MJN110 on Pain-Related Depression of Nesting and Cannabinoid 1 Receptor Function in Male and Female Mice.\",\"authors\":\"Clare M Diester, Hallie Balint, James C Gillespie, Aron H Lichtman, Laura J Sim-Selley, Dana E Selley, S Stevens Negus\",\"doi\":\"10.1124/jpet.123.001940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MJN110 inhibits the enzyme monoacylglycerol lipase (MAGL) to increase levels of the endocannabinoid 2-arachidonoylglycerol , an endogenous high-efficacy agonist of cannabinoid 1 and 2 receptors (CB<sub>1/2</sub>R). MAGL inhibitors are under consideration as candidate analgesics, and we reported previously that acute MJN110 produced partial antinociception in an assay of pain-related behavioral depression in mice. Given the need for repeated analgesic administration in many pain patients and the potential for analgesic tolerance during repeated treatment, this study examined antinociceptive effects of repeated MJN110 on pain-related behavioral depression and CB<sub>1</sub>R-mediated G-protein function. Male and female ICR mice were treated daily for 7 days in a 2 × 2 design with (a) 1.0 mg/kg/d MJN110 or its vehicle followed by (b) intraperitoneal injection of dilute lactic acid (IP acid) or its vehicle as a visceral noxious stimulus to depress nesting behavior. After behavioral testing, G-protein activity was assessed in lumbar spinal cord (LSC) and five brain regions using an assay of CP55,940-stimulated [<sup>35</sup>S]GTPɣS activation. As reported previously, acute MJN110 produced partial but significant relief of IP acid-induced nesting depression on day 1. After 7 days, MJN110 continued to produce significant but partial antinociception in males, while antinociceptive tolerance developed in females. Repeated MJN110 also produced modest decreases in maximum levels of CP55,940-induced [<sup>35</sup>S]GTPɣS binding in spinal cord and most brain regions. These results indicate that repeated treatment with a relatively low antinociceptive MJN110 dose produces only partial and sex-dependent transient antinociception associated with the emergence of CB<sub>1</sub>R desensitization in this model of IP acid-induced nesting depression. SIGNIFICANCE STATEMENT: The drug MJN110 inhibits monoacylglycerol lipase (MAGL) to increase levels of the endogenous cannabinoid 2-arachidonoylglycerol and produce potentially useful therapeutic effects including analgesia. This study used an assay of pain-related behavioral depression in mice to show that repeated MJN110 treatment produced (1) weak but sustained antinociception in male mice, (2) antinociceptive tolerance in females, and (3) modest cannabinoid-receptor desensitization that varied by region and sex. Antinociceptive tolerance may limit the utility of MJN110 for treatment of pain.</p>\",\"PeriodicalId\":16798,\"journal\":{\"name\":\"Journal of Pharmacology and Experimental Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacology and Experimental Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/jpet.123.001940\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.123.001940","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Effects of Repeated Treatment with the Monoacylglycerol Lipase Inhibitor MJN110 on Pain-Related Depression of Nesting and Cannabinoid 1 Receptor Function in Male and Female Mice.
MJN110 inhibits the enzyme monoacylglycerol lipase (MAGL) to increase levels of the endocannabinoid 2-arachidonoylglycerol , an endogenous high-efficacy agonist of cannabinoid 1 and 2 receptors (CB1/2R). MAGL inhibitors are under consideration as candidate analgesics, and we reported previously that acute MJN110 produced partial antinociception in an assay of pain-related behavioral depression in mice. Given the need for repeated analgesic administration in many pain patients and the potential for analgesic tolerance during repeated treatment, this study examined antinociceptive effects of repeated MJN110 on pain-related behavioral depression and CB1R-mediated G-protein function. Male and female ICR mice were treated daily for 7 days in a 2 × 2 design with (a) 1.0 mg/kg/d MJN110 or its vehicle followed by (b) intraperitoneal injection of dilute lactic acid (IP acid) or its vehicle as a visceral noxious stimulus to depress nesting behavior. After behavioral testing, G-protein activity was assessed in lumbar spinal cord (LSC) and five brain regions using an assay of CP55,940-stimulated [35S]GTPɣS activation. As reported previously, acute MJN110 produced partial but significant relief of IP acid-induced nesting depression on day 1. After 7 days, MJN110 continued to produce significant but partial antinociception in males, while antinociceptive tolerance developed in females. Repeated MJN110 also produced modest decreases in maximum levels of CP55,940-induced [35S]GTPɣS binding in spinal cord and most brain regions. These results indicate that repeated treatment with a relatively low antinociceptive MJN110 dose produces only partial and sex-dependent transient antinociception associated with the emergence of CB1R desensitization in this model of IP acid-induced nesting depression. SIGNIFICANCE STATEMENT: The drug MJN110 inhibits monoacylglycerol lipase (MAGL) to increase levels of the endogenous cannabinoid 2-arachidonoylglycerol and produce potentially useful therapeutic effects including analgesia. This study used an assay of pain-related behavioral depression in mice to show that repeated MJN110 treatment produced (1) weak but sustained antinociception in male mice, (2) antinociceptive tolerance in females, and (3) modest cannabinoid-receptor desensitization that varied by region and sex. Antinociceptive tolerance may limit the utility of MJN110 for treatment of pain.
期刊介绍:
A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.