Inga Schwabe, Miljan Jović, Kaili Rimfeld, Andrea G Allegrini, Stéphanie M van den Berg
{"title":"多动症的基因型与环境相互作用:遗传易感性决定了环境影响在多动和注意力不集中症状维度上的可解释程度。","authors":"Inga Schwabe, Miljan Jović, Kaili Rimfeld, Andrea G Allegrini, Stéphanie M van den Berg","doi":"10.1007/s10519-023-10168-5","DOIUrl":null,"url":null,"abstract":"<p><p>Although earlier research has shown that individual differences on the spectrum of attention deficit hyperactivity disorder (ADHD) are highly heritable, emerging evidence suggests that symptoms are associated with complex interactions between genes and environmental influences. This study investigated whether a genetic predisposition [Note that the term 'genetic predisposition' was used in this manuscript to refer to an estimate based on twin modeling (an individual's score on the latent trait that resembles additive genetic influences) in the particular population being examined.] for the symptom dimensions hyperactivity and inattention determines the extent to which unique-environmental influences explain variability in these symptoms. To this purpose, we analysed a sample drawn from the Twins Early Development Study (TEDS) that consisted of item-level scores of 2168 16-year-old twin pairs who completed both the Strengths and Difficulties Questionnaire (SDQ; Goodman, in J Child Psychol Psychiatry 38:581-586, 1997) and the Strength and Weaknesses of ADHD Symptoms and Normal Behavior (SWAN; Swanson, in Paper presented at the meeting of the American Psychological Association, Los Angeles, 1981) questionnaire. To maximize the psychometric information to measure ADHD symptoms, psychometric analyses were performed to investigate whether the items from the two questionnaires could be combined to form two longer subscales. In the estimation of genotype-environment interaction, we corrected for error variance heterogeneity in the measurement of ADHD symptoms through the application of item response theory (IRT) measurement models. A positive interaction was found for both hyperactivity (e.g., [Formula: see text] = 2.20 with 95% highest posterior density interval equal to [1.79;2.65] and effect size equal to 3.00) and inattention (e.g., [Formula: see text] = 2.16 with 95% highest posterior density interval equal to [1.56;2.79] and effect size equal to 3.07). These results indicate that unique-environmental influences were more important in creating individual differences in both hyperactivity and inattention for twins with a genetic predisposition for these symptoms than for twins without such a predisposition.</p>","PeriodicalId":8715,"journal":{"name":"Behavior Genetics","volume":" ","pages":"169-180"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861382/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genotype-Environment Interaction in ADHD: Genetic Predisposition Determines the Extent to Which Environmental Influences Explain Variability in the Symptom Dimensions Hyperactivity and Inattention.\",\"authors\":\"Inga Schwabe, Miljan Jović, Kaili Rimfeld, Andrea G Allegrini, Stéphanie M van den Berg\",\"doi\":\"10.1007/s10519-023-10168-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although earlier research has shown that individual differences on the spectrum of attention deficit hyperactivity disorder (ADHD) are highly heritable, emerging evidence suggests that symptoms are associated with complex interactions between genes and environmental influences. This study investigated whether a genetic predisposition [Note that the term 'genetic predisposition' was used in this manuscript to refer to an estimate based on twin modeling (an individual's score on the latent trait that resembles additive genetic influences) in the particular population being examined.] for the symptom dimensions hyperactivity and inattention determines the extent to which unique-environmental influences explain variability in these symptoms. To this purpose, we analysed a sample drawn from the Twins Early Development Study (TEDS) that consisted of item-level scores of 2168 16-year-old twin pairs who completed both the Strengths and Difficulties Questionnaire (SDQ; Goodman, in J Child Psychol Psychiatry 38:581-586, 1997) and the Strength and Weaknesses of ADHD Symptoms and Normal Behavior (SWAN; Swanson, in Paper presented at the meeting of the American Psychological Association, Los Angeles, 1981) questionnaire. To maximize the psychometric information to measure ADHD symptoms, psychometric analyses were performed to investigate whether the items from the two questionnaires could be combined to form two longer subscales. In the estimation of genotype-environment interaction, we corrected for error variance heterogeneity in the measurement of ADHD symptoms through the application of item response theory (IRT) measurement models. A positive interaction was found for both hyperactivity (e.g., [Formula: see text] = 2.20 with 95% highest posterior density interval equal to [1.79;2.65] and effect size equal to 3.00) and inattention (e.g., [Formula: see text] = 2.16 with 95% highest posterior density interval equal to [1.56;2.79] and effect size equal to 3.07). These results indicate that unique-environmental influences were more important in creating individual differences in both hyperactivity and inattention for twins with a genetic predisposition for these symptoms than for twins without such a predisposition.</p>\",\"PeriodicalId\":8715,\"journal\":{\"name\":\"Behavior Genetics\",\"volume\":\" \",\"pages\":\"169-180\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10519-023-10168-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10519-023-10168-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Genotype-Environment Interaction in ADHD: Genetic Predisposition Determines the Extent to Which Environmental Influences Explain Variability in the Symptom Dimensions Hyperactivity and Inattention.
Although earlier research has shown that individual differences on the spectrum of attention deficit hyperactivity disorder (ADHD) are highly heritable, emerging evidence suggests that symptoms are associated with complex interactions between genes and environmental influences. This study investigated whether a genetic predisposition [Note that the term 'genetic predisposition' was used in this manuscript to refer to an estimate based on twin modeling (an individual's score on the latent trait that resembles additive genetic influences) in the particular population being examined.] for the symptom dimensions hyperactivity and inattention determines the extent to which unique-environmental influences explain variability in these symptoms. To this purpose, we analysed a sample drawn from the Twins Early Development Study (TEDS) that consisted of item-level scores of 2168 16-year-old twin pairs who completed both the Strengths and Difficulties Questionnaire (SDQ; Goodman, in J Child Psychol Psychiatry 38:581-586, 1997) and the Strength and Weaknesses of ADHD Symptoms and Normal Behavior (SWAN; Swanson, in Paper presented at the meeting of the American Psychological Association, Los Angeles, 1981) questionnaire. To maximize the psychometric information to measure ADHD symptoms, psychometric analyses were performed to investigate whether the items from the two questionnaires could be combined to form two longer subscales. In the estimation of genotype-environment interaction, we corrected for error variance heterogeneity in the measurement of ADHD symptoms through the application of item response theory (IRT) measurement models. A positive interaction was found for both hyperactivity (e.g., [Formula: see text] = 2.20 with 95% highest posterior density interval equal to [1.79;2.65] and effect size equal to 3.00) and inattention (e.g., [Formula: see text] = 2.16 with 95% highest posterior density interval equal to [1.56;2.79] and effect size equal to 3.07). These results indicate that unique-environmental influences were more important in creating individual differences in both hyperactivity and inattention for twins with a genetic predisposition for these symptoms than for twins without such a predisposition.
期刊介绍:
Behavior Genetics - the leading journal concerned with the genetic analysis of complex traits - is published in cooperation with the Behavior Genetics Association. This timely journal disseminates the most current original research on the inheritance and evolution of behavioral characteristics in man and other species. Contributions from eminent international researchers focus on both the application of various genetic perspectives to the study of behavioral characteristics and the influence of behavioral differences on the genetic structure of populations.