Rhiannon E. Boseley, Nicole J. Sylvain, Lissa Peeling, Michael E. Kelly, M. Jake Pushie
{"title":"中风后大脑生物标记物变化的傅立叶变换红外成像概念和方法综述。","authors":"Rhiannon E. Boseley, Nicole J. Sylvain, Lissa Peeling, Michael E. Kelly, M. Jake Pushie","doi":"10.1016/j.bbamem.2024.184287","DOIUrl":null,"url":null,"abstract":"<div><p>Stroke represents a core area of study in neurosciences and public health due to its global contribution toward mortality and disability. The intricate pathophysiology of stroke, including ischemic and hemorrhagic events, involves the interruption in oxygen and nutrient delivery to the brain. Disruption of these crucial processes in the central nervous system leads to metabolic dysregulation and cell death. Fourier transform infrared (FTIR) spectroscopy can simultaneously measure total protein and lipid content along with a number of key biomarkers within brain tissue that cannot be observed using conventional techniques. FTIR imaging provides the opportunity to visualize this information in tissue which has not been chemically treated prior to analysis, thus retaining the spatial distribution and <em>in situ</em> chemical information. Here we present a review of FTIR imaging methods for investigating the biomarker responses in the post-stroke brain.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000527362400018X/pdfft?md5=0ec61c59cbfc1c752a5daf2a31d03a28&pid=1-s2.0-S000527362400018X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A review of concepts and methods for FTIR imaging of biomarker changes in the post-stroke brain\",\"authors\":\"Rhiannon E. Boseley, Nicole J. Sylvain, Lissa Peeling, Michael E. Kelly, M. Jake Pushie\",\"doi\":\"10.1016/j.bbamem.2024.184287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stroke represents a core area of study in neurosciences and public health due to its global contribution toward mortality and disability. The intricate pathophysiology of stroke, including ischemic and hemorrhagic events, involves the interruption in oxygen and nutrient delivery to the brain. Disruption of these crucial processes in the central nervous system leads to metabolic dysregulation and cell death. Fourier transform infrared (FTIR) spectroscopy can simultaneously measure total protein and lipid content along with a number of key biomarkers within brain tissue that cannot be observed using conventional techniques. FTIR imaging provides the opportunity to visualize this information in tissue which has not been chemically treated prior to analysis, thus retaining the spatial distribution and <em>in situ</em> chemical information. Here we present a review of FTIR imaging methods for investigating the biomarker responses in the post-stroke brain.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S000527362400018X/pdfft?md5=0ec61c59cbfc1c752a5daf2a31d03a28&pid=1-s2.0-S000527362400018X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000527362400018X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000527362400018X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A review of concepts and methods for FTIR imaging of biomarker changes in the post-stroke brain
Stroke represents a core area of study in neurosciences and public health due to its global contribution toward mortality and disability. The intricate pathophysiology of stroke, including ischemic and hemorrhagic events, involves the interruption in oxygen and nutrient delivery to the brain. Disruption of these crucial processes in the central nervous system leads to metabolic dysregulation and cell death. Fourier transform infrared (FTIR) spectroscopy can simultaneously measure total protein and lipid content along with a number of key biomarkers within brain tissue that cannot be observed using conventional techniques. FTIR imaging provides the opportunity to visualize this information in tissue which has not been chemically treated prior to analysis, thus retaining the spatial distribution and in situ chemical information. Here we present a review of FTIR imaging methods for investigating the biomarker responses in the post-stroke brain.