Jiangxia Li , Ke Xu , Yunqing Cui , Tianyuan Xu , Wenchao Fei , Cuiting Lyu , Yinjue Yu , Lina Yang , Yang Hong , Gong Yang
{"title":"ECM1 相关 miR-1260b 通过靶向 GDI1 促进成骨分化。","authors":"Jiangxia Li , Ke Xu , Yunqing Cui , Tianyuan Xu , Wenchao Fei , Cuiting Lyu , Yinjue Yu , Lina Yang , Yang Hong , Gong Yang","doi":"10.1016/j.acthis.2024.152133","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Osteoporosis (OP) is a common disease among older adults. The promotion of </span>osteoblast differentiation plays a crucial role in alleviating OP symptoms. </span>Extracellular matrix protein<span><span> 1 (ECM1) has been reported to be closely associated with osteogenic differentiation. In this study, we constructed U2OS cell lines with ECM1 knockdown and ECM1a overexpression based on knockdown, and identified the target </span>miRNA<span><span><span> (miR-1260b) by sequencing. Overexpression of miR-1260b promoted the osteogenic differentiation of U2OS and MG63 cells, as demonstrated by increased alkaline phosphatase (ALP) activity, matrix </span>mineralization, and Runt-Related Transcription Factor 2 (RUNX2), </span>Osteopontin (OPN), Collagen I (COL1A1), and </span></span></span>Osteocalcin<span><span> (OCN) protein expressions, whereas low expression of miR-1260b had the opposite effect. In addition, miR-1260b expression was decreased in OP patients than in non-OP patients. Next, we predicted the target gene of miRNA through TargetScan and miRDB and found that miR-1260b negatively regulated </span>GDP dissociation inhibitor<span><span> 1 (GDI1) by directly binding to its 3′-untranslated region. Subsequent experiments revealed that GDI1 overexpression decreased ALP activity and calcium deposit, reduced RUNX2, OPN, COL1A1, and OCN expression levels, and reversed the effects of miR-1260b on osteogenic differentiation. In conclusion, ECM1-related miR-1260b promotes osteogenic differentiation by targeting GDI1 in U2OS and MG63 cells. Thus, this study has significant implication for osteoporosis </span>treatment.</span></span></p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 1","pages":"Article 152133"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECM1-associated miR-1260b promotes osteogenic differentiation by targeting GDI1\",\"authors\":\"Jiangxia Li , Ke Xu , Yunqing Cui , Tianyuan Xu , Wenchao Fei , Cuiting Lyu , Yinjue Yu , Lina Yang , Yang Hong , Gong Yang\",\"doi\":\"10.1016/j.acthis.2024.152133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Osteoporosis (OP) is a common disease among older adults. The promotion of </span>osteoblast differentiation plays a crucial role in alleviating OP symptoms. </span>Extracellular matrix protein<span><span> 1 (ECM1) has been reported to be closely associated with osteogenic differentiation. In this study, we constructed U2OS cell lines with ECM1 knockdown and ECM1a overexpression based on knockdown, and identified the target </span>miRNA<span><span><span> (miR-1260b) by sequencing. Overexpression of miR-1260b promoted the osteogenic differentiation of U2OS and MG63 cells, as demonstrated by increased alkaline phosphatase (ALP) activity, matrix </span>mineralization, and Runt-Related Transcription Factor 2 (RUNX2), </span>Osteopontin (OPN), Collagen I (COL1A1), and </span></span></span>Osteocalcin<span><span> (OCN) protein expressions, whereas low expression of miR-1260b had the opposite effect. In addition, miR-1260b expression was decreased in OP patients than in non-OP patients. Next, we predicted the target gene of miRNA through TargetScan and miRDB and found that miR-1260b negatively regulated </span>GDP dissociation inhibitor<span><span> 1 (GDI1) by directly binding to its 3′-untranslated region. Subsequent experiments revealed that GDI1 overexpression decreased ALP activity and calcium deposit, reduced RUNX2, OPN, COL1A1, and OCN expression levels, and reversed the effects of miR-1260b on osteogenic differentiation. In conclusion, ECM1-related miR-1260b promotes osteogenic differentiation by targeting GDI1 in U2OS and MG63 cells. Thus, this study has significant implication for osteoporosis </span>treatment.</span></span></p></div>\",\"PeriodicalId\":6961,\"journal\":{\"name\":\"Acta histochemica\",\"volume\":\"126 1\",\"pages\":\"Article 152133\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta histochemica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065128124000011\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta histochemica","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128124000011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
ECM1-associated miR-1260b promotes osteogenic differentiation by targeting GDI1
Osteoporosis (OP) is a common disease among older adults. The promotion of osteoblast differentiation plays a crucial role in alleviating OP symptoms. Extracellular matrix protein 1 (ECM1) has been reported to be closely associated with osteogenic differentiation. In this study, we constructed U2OS cell lines with ECM1 knockdown and ECM1a overexpression based on knockdown, and identified the target miRNA (miR-1260b) by sequencing. Overexpression of miR-1260b promoted the osteogenic differentiation of U2OS and MG63 cells, as demonstrated by increased alkaline phosphatase (ALP) activity, matrix mineralization, and Runt-Related Transcription Factor 2 (RUNX2), Osteopontin (OPN), Collagen I (COL1A1), and Osteocalcin (OCN) protein expressions, whereas low expression of miR-1260b had the opposite effect. In addition, miR-1260b expression was decreased in OP patients than in non-OP patients. Next, we predicted the target gene of miRNA through TargetScan and miRDB and found that miR-1260b negatively regulated GDP dissociation inhibitor 1 (GDI1) by directly binding to its 3′-untranslated region. Subsequent experiments revealed that GDI1 overexpression decreased ALP activity and calcium deposit, reduced RUNX2, OPN, COL1A1, and OCN expression levels, and reversed the effects of miR-1260b on osteogenic differentiation. In conclusion, ECM1-related miR-1260b promotes osteogenic differentiation by targeting GDI1 in U2OS and MG63 cells. Thus, this study has significant implication for osteoporosis treatment.
期刊介绍:
Acta histochemica, a journal of structural biochemistry of cells and tissues, publishes original research articles, short communications, reviews, letters to the editor, meeting reports and abstracts of meetings. The aim of the journal is to provide a forum for the cytochemical and histochemical research community in the life sciences, including cell biology, biotechnology, neurobiology, immunobiology, pathology, pharmacology, botany, zoology and environmental and toxicological research. The journal focuses on new developments in cytochemistry and histochemistry and their applications. Manuscripts reporting on studies of living cells and tissues are particularly welcome. Understanding the complexity of cells and tissues, i.e. their biocomplexity and biodiversity, is a major goal of the journal and reports on this topic are especially encouraged. Original research articles, short communications and reviews that report on new developments in cytochemistry and histochemistry are welcomed, especially when molecular biology is combined with the use of advanced microscopical techniques including image analysis and cytometry. Letters to the editor should comment or interpret previously published articles in the journal to trigger scientific discussions. Meeting reports are considered to be very important publications in the journal because they are excellent opportunities to present state-of-the-art overviews of fields in research where the developments are fast and hard to follow. Authors of meeting reports should consult the editors before writing a report. The editorial policy of the editors and the editorial board is rapid publication. Once a manuscript is received by one of the editors, an editorial decision about acceptance, revision or rejection will be taken within a month. It is the aim of the publishers to have a manuscript published within three months after the manuscript has been accepted