Jingyun Wang, Qiaoyu Jia, Shuqin Jiang, Wenquan Lu, Hanbing Ning
{"title":"POU6F1通过增加lncRNA-CASC2的转录来调控胃癌中SOCS2/SLC7A11的信号转导,从而促进铁变态反应。","authors":"Jingyun Wang, Qiaoyu Jia, Shuqin Jiang, Wenquan Lu, Hanbing Ning","doi":"10.1007/s10565-024-09843-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study investigated the effect and mechanism of POU6F1 and lncRNA-CASC2 on ferroptosis of gastric cancer (GC) cells.</p><p><strong>Methods: </strong>GC cells treated with erastin and RSL3 were detected for ferroptosis, reactive oxygen species (ROS) level, and cell viability. The expression levels of POU6F1, lncRNA-CASC2, SOCS2, and ferroptosis-related molecules (GPX4 and SLC7A11) were also measured. The regulations among POU6F1, lncRNA-CASC2, FMR1, SOCS2, and SLC7A11 were determined. Subcutaneous tumor models were established, in which the expressions of Ki-67, SOCS2, and GPX4 were detected by immunohistochemistry.</p><p><strong>Results: </strong>GC patients with decreased expressions of POU6F1 and lncRNA-CASC2 had lower survival rate. Overexpression of POU6F1 or lncRNA-CASC2 decreased cell proliferation and GSH levels in GC cells, in addition to increasing total iron, Fe2+, MDA, and ROS levels. POU6F1 directly binds to the lncRNA-CASC2 promoter to promote its transcription. LncRNA-CASC2 can target FMR1 and increase SOCS2 mRNA stability to promote SLC7A11 ubiquitination degradation and activate ferroptosis signaling. Knockdown of SOCS2 inhibited the ferroptosis sensitivity of GC cells and reversed the effects of POU6F1 and lncRNA-CASC2 overexpression on ferroptosis in GC cells.</p><p><strong>Conclusion: </strong>Transcription factor POU6F1 binds directly to the lncRNA-CASC2 promoter to promote its expression, while upregulated lncRNA-CASC2 increases SOCS2 stability and expression by targeting FMR1, thereby inhibiting SLC7A11 signaling to promote ferroptosis in GC cells and inhibit GC progression.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"3"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808632/pdf/","citationCount":"0","resultStr":"{\"title\":\"POU6F1 promotes ferroptosis by increasing lncRNA-CASC2 transcription to regulate SOCS2/SLC7A11 signaling in gastric cancer.\",\"authors\":\"Jingyun Wang, Qiaoyu Jia, Shuqin Jiang, Wenquan Lu, Hanbing Ning\",\"doi\":\"10.1007/s10565-024-09843-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study investigated the effect and mechanism of POU6F1 and lncRNA-CASC2 on ferroptosis of gastric cancer (GC) cells.</p><p><strong>Methods: </strong>GC cells treated with erastin and RSL3 were detected for ferroptosis, reactive oxygen species (ROS) level, and cell viability. The expression levels of POU6F1, lncRNA-CASC2, SOCS2, and ferroptosis-related molecules (GPX4 and SLC7A11) were also measured. The regulations among POU6F1, lncRNA-CASC2, FMR1, SOCS2, and SLC7A11 were determined. Subcutaneous tumor models were established, in which the expressions of Ki-67, SOCS2, and GPX4 were detected by immunohistochemistry.</p><p><strong>Results: </strong>GC patients with decreased expressions of POU6F1 and lncRNA-CASC2 had lower survival rate. Overexpression of POU6F1 or lncRNA-CASC2 decreased cell proliferation and GSH levels in GC cells, in addition to increasing total iron, Fe2+, MDA, and ROS levels. POU6F1 directly binds to the lncRNA-CASC2 promoter to promote its transcription. LncRNA-CASC2 can target FMR1 and increase SOCS2 mRNA stability to promote SLC7A11 ubiquitination degradation and activate ferroptosis signaling. Knockdown of SOCS2 inhibited the ferroptosis sensitivity of GC cells and reversed the effects of POU6F1 and lncRNA-CASC2 overexpression on ferroptosis in GC cells.</p><p><strong>Conclusion: </strong>Transcription factor POU6F1 binds directly to the lncRNA-CASC2 promoter to promote its expression, while upregulated lncRNA-CASC2 increases SOCS2 stability and expression by targeting FMR1, thereby inhibiting SLC7A11 signaling to promote ferroptosis in GC cells and inhibit GC progression.</p>\",\"PeriodicalId\":9672,\"journal\":{\"name\":\"Cell Biology and Toxicology\",\"volume\":\"40 1\",\"pages\":\"3\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10565-024-09843-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09843-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
POU6F1 promotes ferroptosis by increasing lncRNA-CASC2 transcription to regulate SOCS2/SLC7A11 signaling in gastric cancer.
Objective: This study investigated the effect and mechanism of POU6F1 and lncRNA-CASC2 on ferroptosis of gastric cancer (GC) cells.
Methods: GC cells treated with erastin and RSL3 were detected for ferroptosis, reactive oxygen species (ROS) level, and cell viability. The expression levels of POU6F1, lncRNA-CASC2, SOCS2, and ferroptosis-related molecules (GPX4 and SLC7A11) were also measured. The regulations among POU6F1, lncRNA-CASC2, FMR1, SOCS2, and SLC7A11 were determined. Subcutaneous tumor models were established, in which the expressions of Ki-67, SOCS2, and GPX4 were detected by immunohistochemistry.
Results: GC patients with decreased expressions of POU6F1 and lncRNA-CASC2 had lower survival rate. Overexpression of POU6F1 or lncRNA-CASC2 decreased cell proliferation and GSH levels in GC cells, in addition to increasing total iron, Fe2+, MDA, and ROS levels. POU6F1 directly binds to the lncRNA-CASC2 promoter to promote its transcription. LncRNA-CASC2 can target FMR1 and increase SOCS2 mRNA stability to promote SLC7A11 ubiquitination degradation and activate ferroptosis signaling. Knockdown of SOCS2 inhibited the ferroptosis sensitivity of GC cells and reversed the effects of POU6F1 and lncRNA-CASC2 overexpression on ferroptosis in GC cells.
Conclusion: Transcription factor POU6F1 binds directly to the lncRNA-CASC2 promoter to promote its expression, while upregulated lncRNA-CASC2 increases SOCS2 stability and expression by targeting FMR1, thereby inhibiting SLC7A11 signaling to promote ferroptosis in GC cells and inhibit GC progression.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.