Jinhua Mo, Zengyi Gong, Hong Liu, Lian Zhou, Yanguang Zhao
{"title":"THAP9-AS1 通过靶向调控 miR-185-5p/SOX13 轴促进鼻咽癌的进展。","authors":"Jinhua Mo, Zengyi Gong, Hong Liu, Lian Zhou, Yanguang Zhao","doi":"10.1556/2060.2023.00232","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It has been reported that long non-coding RNA THAP9-AS1 exerts carcinogenic role by mediating miRNAs and target genes in various human cancers. However, whether THAP9-AS1 influences the progression of nasopharyngeal carcinoma (NPC) remains unknown.</p><p><strong>Methods: </strong>The transcriptional levels of THAP9-AS1 and miR-185-5p were estimated via quantitative real time polymerase chain reaction (qRT-PCR) assay. The protein level of SOX13 was detected with western blotting assay. Additionally, methyl thiazolyl tetrazolium (MTT) assay as well as colony formation assay were utilized to measure cell growth. The apoptotic cells were observed by employing Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) staining analysis, and transwell assay was introduced to test cell migration in addition to invasion. Moreover, the relationship between miR-185-5p and THAP9-AS1 or SOX13 was estimated through dual-luciferase reporter gene assay.</p><p><strong>Results: </strong>THAP9-AS1 was overexpressed in head and neck squamous cell carcinoma (HNSCC) tissues and NPC cells. Besides, silencing of THAP9-AS1 depressed the life processes of NPC cells including cell growth, migration as well as invasion but facilitated cell apoptosis. Further investigation proved that miR-185-5p was the direct target of THAP9-AS1. Besides, the knockdown of THAP9-AS1 notably reduced the transcriptional level of miR-185-5p. Furthermore, THAP9-AS1 served as a sponge of miR-185-5p to modulate the expression of SOX13, which regulated the development of NPC cells.</p><p><strong>Conclusion: </strong>This work verified that THAP9-AS1 promoted NPC cell progression at least partly by mediating the miR-185-5p/SOX13 axis.</p>","PeriodicalId":20058,"journal":{"name":"Physiology international","volume":" ","pages":"19-34"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THAP9-AS1 promotes nasopharyngeal carcinoma progression through targeted regulation of the miR-185-5p/SOX13 axis.\",\"authors\":\"Jinhua Mo, Zengyi Gong, Hong Liu, Lian Zhou, Yanguang Zhao\",\"doi\":\"10.1556/2060.2023.00232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>It has been reported that long non-coding RNA THAP9-AS1 exerts carcinogenic role by mediating miRNAs and target genes in various human cancers. However, whether THAP9-AS1 influences the progression of nasopharyngeal carcinoma (NPC) remains unknown.</p><p><strong>Methods: </strong>The transcriptional levels of THAP9-AS1 and miR-185-5p were estimated via quantitative real time polymerase chain reaction (qRT-PCR) assay. The protein level of SOX13 was detected with western blotting assay. Additionally, methyl thiazolyl tetrazolium (MTT) assay as well as colony formation assay were utilized to measure cell growth. The apoptotic cells were observed by employing Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) staining analysis, and transwell assay was introduced to test cell migration in addition to invasion. Moreover, the relationship between miR-185-5p and THAP9-AS1 or SOX13 was estimated through dual-luciferase reporter gene assay.</p><p><strong>Results: </strong>THAP9-AS1 was overexpressed in head and neck squamous cell carcinoma (HNSCC) tissues and NPC cells. Besides, silencing of THAP9-AS1 depressed the life processes of NPC cells including cell growth, migration as well as invasion but facilitated cell apoptosis. Further investigation proved that miR-185-5p was the direct target of THAP9-AS1. Besides, the knockdown of THAP9-AS1 notably reduced the transcriptional level of miR-185-5p. Furthermore, THAP9-AS1 served as a sponge of miR-185-5p to modulate the expression of SOX13, which regulated the development of NPC cells.</p><p><strong>Conclusion: </strong>This work verified that THAP9-AS1 promoted NPC cell progression at least partly by mediating the miR-185-5p/SOX13 axis.</p>\",\"PeriodicalId\":20058,\"journal\":{\"name\":\"Physiology international\",\"volume\":\" \",\"pages\":\"19-34\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1556/2060.2023.00232\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/21 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1556/2060.2023.00232","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/21 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
THAP9-AS1 promotes nasopharyngeal carcinoma progression through targeted regulation of the miR-185-5p/SOX13 axis.
Background: It has been reported that long non-coding RNA THAP9-AS1 exerts carcinogenic role by mediating miRNAs and target genes in various human cancers. However, whether THAP9-AS1 influences the progression of nasopharyngeal carcinoma (NPC) remains unknown.
Methods: The transcriptional levels of THAP9-AS1 and miR-185-5p were estimated via quantitative real time polymerase chain reaction (qRT-PCR) assay. The protein level of SOX13 was detected with western blotting assay. Additionally, methyl thiazolyl tetrazolium (MTT) assay as well as colony formation assay were utilized to measure cell growth. The apoptotic cells were observed by employing Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) staining analysis, and transwell assay was introduced to test cell migration in addition to invasion. Moreover, the relationship between miR-185-5p and THAP9-AS1 or SOX13 was estimated through dual-luciferase reporter gene assay.
Results: THAP9-AS1 was overexpressed in head and neck squamous cell carcinoma (HNSCC) tissues and NPC cells. Besides, silencing of THAP9-AS1 depressed the life processes of NPC cells including cell growth, migration as well as invasion but facilitated cell apoptosis. Further investigation proved that miR-185-5p was the direct target of THAP9-AS1. Besides, the knockdown of THAP9-AS1 notably reduced the transcriptional level of miR-185-5p. Furthermore, THAP9-AS1 served as a sponge of miR-185-5p to modulate the expression of SOX13, which regulated the development of NPC cells.
Conclusion: This work verified that THAP9-AS1 promoted NPC cell progression at least partly by mediating the miR-185-5p/SOX13 axis.
期刊介绍:
The journal provides a forum for important new research papers written by eminent scientists on experimental medical sciences. Papers reporting on both original work and review articles in the fields of basic and clinical physiology, pathophysiology (from the subcellular organization level up to the oranizmic one), as well as related disciplines, including history of physiological sciences, are accepted.